Require Import prelude.gmap iris.lifting. Require Export iris.weakestpre barrier.parameter. Import uPred. (* TODO RJ: Figure out a way to to always use our Σ. *) (** Bind. *) Lemma wp_bind E e K Q : wp (Σ:=Σ) E e (λ v, wp (Σ:=Σ) E (fill K (v2e v)) Q) ⊑ wp (Σ:=Σ) E (fill K e) Q. Proof. by apply (wp_bind (Σ:=Σ) (K := fill K)), fill_is_ctx. Qed. (** Base axioms for core primitives of the language: Stateful reductions. *) Lemma wp_lift_step E1 E2 (φ : expr → state → Prop) Q e1 σ1 : E1 ⊆ E2 → to_val e1 = None → reducible e1 σ1 → (∀ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → ef = None ∧ φ e2 σ2) → pvs E2 E1 (ownP (Σ:=Σ) σ1 ★ ▷ ∀ e2 σ2, (■ φ e2 σ2 ∧ ownP (Σ:=Σ) σ2) -★ pvs E1 E2 (wp (Σ:=Σ) E2 e2 Q)) ⊑ wp (Σ:=Σ) E2 e1 Q. Proof. intros ? He Hsafe Hstep. (* RJ: working around https://coq.inria.fr/bugs/show_bug.cgi?id=4536 *) etransitivity; last eapply wp_lift_step with (σ2 := σ1) (φ0 := λ e' σ' ef, ef = None ∧ φ e' σ'); last first. - intros e2 σ2 ef Hstep'%prim_ectx_step; last done. by apply Hstep. - destruct Hsafe as (e' & σ' & ? & ?). do 3 eexists. exists EmptyCtx. do 2 eexists. split_ands; try (by rewrite fill_empty); eassumption. - done. - eassumption. - apply pvs_mono. apply sep_mono; first done. apply later_mono. apply forall_mono=>e2. apply forall_mono=>σ2. apply forall_intro=>ef. apply wand_intro_l. rewrite always_and_sep_l' -associative -always_and_sep_l'. apply const_elim_l; move=>[-> Hφ]. eapply const_intro_l; first eexact Hφ. rewrite always_and_sep_l' associative -always_and_sep_l' wand_elim_r. apply pvs_mono. rewrite right_id. done. Qed. (* TODO RJ: Figure out some better way to make the postcondition a predicate over a *location* *) Lemma wp_alloc_pst E σ e v Q : e2v e = Some v → (ownP (Σ:=Σ) σ ★ ▷(∀ l, ■(σ !! l = None) ∧ ownP (Σ:=Σ) (<[l:=v]>σ) -★ Q (LocV l))) ⊑ wp (Σ:=Σ) E (Alloc e) Q. Proof. (* RJ FIXME (also for most other lemmas in this file): rewrite would be nicer... *) intros Hvl. etransitivity; last eapply wp_lift_step with (σ1 := σ) (φ := λ e' σ', ∃ l, e' = Loc l ∧ σ' = <[l:=v]>σ ∧ σ !! l = None); last first. - intros e2 σ2 ef Hstep. inversion_clear Hstep. split; first done. rewrite Hv in Hvl. inversion_clear Hvl. eexists; split_ands; done. - set (l := fresh $ dom (gset loc) σ). exists (Loc l), ((<[l:=v]>)σ), None. eapply AllocS; first done. apply (not_elem_of_dom (D := gset loc)). apply is_fresh. - reflexivity. - reflexivity. - rewrite -pvs_intro. apply sep_mono; first done. apply later_mono. apply forall_intro=>e2. apply forall_intro=>σ2. apply wand_intro_l. rewrite -pvs_intro. rewrite always_and_sep_l' -associative -always_and_sep_l'. apply const_elim_l. intros [l [-> [-> Hl]]]. rewrite (forall_elim _ l). eapply const_intro_l; first eexact Hl. rewrite always_and_sep_l' associative -always_and_sep_l' wand_elim_r. rewrite -wp_value'; done. Qed. Lemma wp_load_pst E σ l v Q : σ !! l = Some v → (ownP (Σ:=Σ) σ ★ ▷(ownP σ -★ Q v)) ⊑ wp (Σ:=Σ) E (Load (Loc l)) Q. Proof. intros Hl. etransitivity; last eapply wp_lift_step with (σ1 := σ) (φ := λ e' σ', e' = v2e v ∧ σ' = σ); last first. - intros e2 σ2 ef Hstep. move: Hl. inversion_clear Hstep=>{σ}. rewrite Hlookup. case=>->. done. - do 3 eexists. econstructor; eassumption. - reflexivity. - reflexivity. - rewrite -pvs_intro. apply sep_mono; first done. apply later_mono. apply forall_intro=>e2. apply forall_intro=>σ2. apply wand_intro_l. rewrite -pvs_intro. rewrite always_and_sep_l' -associative -always_and_sep_l'. apply const_elim_l. intros [-> ->]. by rewrite wand_elim_r -wp_value. Qed. Lemma wp_store_pst E σ l e v v' Q : e2v e = Some v → σ !! l = Some v' → (ownP (Σ:=Σ) σ ★ ▷(ownP (<[l:=v]>σ) -★ Q LitUnitV)) ⊑ wp (Σ:=Σ) E (Store (Loc l) e) Q. Proof. intros Hvl Hl. etransitivity; last eapply wp_lift_step with (σ1 := σ) (φ := λ e' σ', e' = LitUnit ∧ σ' = <[l:=v]>σ); last first. - intros e2 σ2 ef Hstep. move: Hl. inversion_clear Hstep=>{σ2}. rewrite Hvl in Hv. inversion_clear Hv. done. - do 3 eexists. eapply StoreS; last (eexists; eassumption). eassumption. - reflexivity. - reflexivity. - rewrite -pvs_intro. apply sep_mono; first done. apply later_mono. apply forall_intro=>e2. apply forall_intro=>σ2. apply wand_intro_l. rewrite -pvs_intro. rewrite always_and_sep_l' -associative -always_and_sep_l'. apply const_elim_l. intros [-> ->]. by rewrite wand_elim_r -wp_value'. Qed. Lemma wp_cas_fail_pst E σ l e1 v1 e2 v2 v' Q : e2v e1 = Some v1 → e2v e2 = Some v2 → σ !! l = Some v' → v' <> v1 → (ownP (Σ:=Σ) σ ★ ▷(ownP σ -★ Q LitFalseV)) ⊑ wp (Σ:=Σ) E (Cas (Loc l) e1 e2) Q. Proof. intros Hvl Hl. etransitivity; last eapply wp_lift_step with (σ1 := σ) (φ := λ e' σ', e' = LitFalse ∧ σ' = σ); last first. - intros e2' σ2' ef Hstep. inversion_clear Hstep; first done. (* FIXME this rewriting is rather ugly. *) exfalso. rewrite Hvl in Hv1. case:Hv1=>?; subst v1. rewrite Hlookup in H. case:H=>?; subst v'. done. - do 3 eexists. eapply CasFailS; eassumption. - reflexivity. - reflexivity. - rewrite -pvs_intro. apply sep_mono; first done. apply later_mono. apply forall_intro=>e2'. apply forall_intro=>σ2'. apply wand_intro_l. rewrite -pvs_intro. rewrite always_and_sep_l' -associative -always_and_sep_l'. apply const_elim_l. intros [-> ->]. by rewrite wand_elim_r -wp_value'. Qed. Lemma wp_cas_suc_pst E σ l e1 v1 e2 v2 Q : e2v e1 = Some v1 → e2v e2 = Some v2 → σ !! l = Some v1 → (ownP (Σ:=Σ) σ ★ ▷(ownP (<[l:=v2]>σ) -★ Q LitTrueV)) ⊑ wp (Σ:=Σ) E (Cas (Loc l) e1 e2) Q. Proof. intros Hvl Hl. etransitivity; last eapply wp_lift_step with (σ1 := σ) (φ := λ e' σ', e' = LitTrue ∧ σ' = <[l:=v2]>σ); last first. - intros e2' σ2' ef Hstep. move:H. inversion_clear Hstep=>H. (* FIXME this rewriting is rather ugly. *) + exfalso. rewrite H in Hlookup. case:Hlookup=>?; subst vl. rewrite Hvl in Hv1. case:Hv1=>?; subst v1. done. + rewrite H in Hlookup. case:Hlookup=>?; subst v1. rewrite Hl in Hv2. case:Hv2=>?; subst v2. done. - do 3 eexists. eapply CasSucS; eassumption. - reflexivity. - reflexivity. - rewrite -pvs_intro. apply sep_mono; first done. apply later_mono. apply forall_intro=>e2'. apply forall_intro=>σ2'. apply wand_intro_l. rewrite -pvs_intro. rewrite always_and_sep_l' -associative -always_and_sep_l'. apply const_elim_l. intros [-> ->]. by rewrite wand_elim_r -wp_value'. Qed. (** Base axioms for core primitives of the language: Stateless reductions *) Lemma wp_fork E e : ▷ wp (Σ:=Σ) coPset_all e (λ _, True) ⊑ wp (Σ:=Σ) E (Fork e) (λ v, ■(v = LitUnitV)). Proof. etransitivity; last eapply wp_lift_pure_step with (φ := λ e' ef, e' = LitUnit ∧ ef = Some e); last first. - intros σ1 e2 σ2 ef Hstep%prim_ectx_step; last first. { do 3 eexists. eapply ForkS. } inversion_clear Hstep. done. - intros ?. do 3 eexists. exists EmptyCtx. do 2 eexists. split_ands; try (by rewrite fill_empty); []. eapply ForkS. - reflexivity. - apply later_mono. apply forall_intro=>e2. apply forall_intro=>ef. apply impl_intro_l. apply const_elim_l. intros [-> ->]. (* FIXME RJ This is ridicolous. *) transitivity (True ★ wp coPset_all e (λ _ : ival Σ, True))%I; first by rewrite left_id. apply sep_mono; last reflexivity. rewrite -wp_value'; last reflexivity. by apply const_intro. Qed. Lemma wp_lift_pure_step E (φ : expr → Prop) Q e1 : to_val e1 = None → (∀ σ1, reducible e1 σ1) → (∀ σ1 e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → σ1 = σ2 ∧ ef = None ∧ φ e2) → (▷ ∀ e2, ■ φ e2 → wp (Σ:=Σ) E e2 Q) ⊑ wp (Σ:=Σ) E e1 Q. Proof. intros He Hsafe Hstep. (* RJ: working around https://coq.inria.fr/bugs/show_bug.cgi?id=4536 *) etransitivity; last eapply wp_lift_pure_step with (φ0 := λ e' ef, ef = None ∧ φ e'); last first. - intros σ1 e2 σ2 ef Hstep'%prim_ectx_step; last done. by apply Hstep. - intros σ1. destruct (Hsafe σ1) as (e' & σ' & ? & ?). do 3 eexists. exists EmptyCtx. do 2 eexists. split_ands; try (by rewrite fill_empty); eassumption. - done. - apply later_mono. apply forall_mono=>e2. apply forall_intro=>ef. apply impl_intro_l. apply const_elim_l; move=>[-> Hφ]. eapply const_intro_l; first eexact Hφ. rewrite impl_elim_r. rewrite right_id. done. Qed. Lemma wp_rec E ef e v Q : e2v e = Some v → ▷wp (Σ:=Σ) E ef.[Rec ef, e /] Q ⊑ wp (Σ:=Σ) E (App (Rec ef) e) Q. Proof. etransitivity; last eapply wp_lift_pure_step with (φ := λ e', e' = ef.[Rec ef, e /]); last first. - intros ? ? ? ? Hstep. inversion_clear Hstep. done. - intros ?. do 3 eexists. eapply BetaS; eassumption. - reflexivity. - apply later_mono, forall_intro=>e2. apply impl_intro_l. apply const_elim_l=>->. done. Qed. Lemma wp_lam E ef e v Q : e2v e = Some v → ▷wp (Σ:=Σ) E ef.[e/] Q ⊑ wp (Σ:=Σ) E (App (Lam ef) e) Q. Proof. intros Hv. rewrite -wp_rec; last eassumption. (* RJ: This pulls in functional extensionality. If that bothers us, we have to talk to the Autosubst guys. *) by asimpl. Qed. Lemma wp_plus n1 n2 E Q : ▷Q (LitNatV (n1 + n2)) ⊑ wp (Σ:=Σ) E (Plus (LitNat n1) (LitNat n2)) Q. Proof. etransitivity; last eapply wp_lift_pure_step with (φ := λ e', e' = LitNat (n1 + n2)); last first. - intros ? ? ? ? Hstep. inversion_clear Hstep; done. - intros ?. do 3 eexists. econstructor. - reflexivity. - apply later_mono, forall_intro=>e2. apply impl_intro_l. apply const_elim_l=>->. rewrite -wp_value'; last reflexivity; done. Qed. Lemma wp_le_true n1 n2 E Q : n1 ≤ n2 → ▷Q LitTrueV ⊑ wp (Σ:=Σ) E (Le (LitNat n1) (LitNat n2)) Q. Proof. intros Hle. etransitivity; last eapply wp_lift_pure_step with (φ := λ e', e' = LitTrue); last first. - intros ? ? ? ? Hstep. inversion_clear Hstep; first done. exfalso. eapply le_not_gt with (n := n1); eassumption. - intros ?. do 3 eexists. econstructor; done. - reflexivity. - apply later_mono, forall_intro=>e2. apply impl_intro_l. apply const_elim_l=>->. rewrite -wp_value'; last reflexivity; done. Qed. Lemma wp_le_false n1 n2 E Q : ~(n1 ≤ n2) → ▷Q LitFalseV ⊑ wp (Σ:=Σ) E (Le (LitNat n1) (LitNat n2)) Q. Proof. intros Hle. etransitivity; last eapply wp_lift_pure_step with (φ := λ e', e' = LitFalse); last first. - intros ? ? ? ? Hstep. inversion_clear Hstep; last done. exfalso. omega. - intros ?. do 3 eexists. econstructor; omega. - reflexivity. - apply later_mono, forall_intro=>e2. apply impl_intro_l. apply const_elim_l=>->. rewrite -wp_value'; last reflexivity; done. Qed. Lemma wp_fst e1 v1 e2 v2 E Q : e2v e1 = Some v1 → e2v e2 = Some v2 → ▷Q v1 ⊑ wp (Σ:=Σ) E (Fst (Pair e1 e2)) Q. Proof. intros Hv1 Hv2. etransitivity; last eapply wp_lift_pure_step with (φ := λ e', e' = e1); last first. - intros ? ? ? ? Hstep. inversion_clear Hstep. done. - intros ?. do 3 eexists. econstructor; eassumption. - reflexivity. - apply later_mono, forall_intro=>e2'. apply impl_intro_l. apply const_elim_l=>->. rewrite -wp_value'; last eassumption; done. Qed. Lemma wp_snd e1 v1 e2 v2 E Q : e2v e1 = Some v1 → e2v e2 = Some v2 → ▷Q v2 ⊑ wp (Σ:=Σ) E (Snd (Pair e1 e2)) Q. Proof. intros Hv1 Hv2. etransitivity; last eapply wp_lift_pure_step with (φ := λ e', e' = e2); last first. - intros ? ? ? ? Hstep. inversion_clear Hstep; done. - intros ?. do 3 eexists. econstructor; eassumption. - reflexivity. - apply later_mono, forall_intro=>e2'. apply impl_intro_l. apply const_elim_l=>->. rewrite -wp_value'; last eassumption; done. Qed. Lemma wp_case_inl e0 v0 e1 e2 E Q : e2v e0 = Some v0 → ▷wp (Σ:=Σ) E e1.[e0/] Q ⊑ wp (Σ:=Σ) E (Case (InjL e0) e1 e2) Q. Proof. intros Hv0. etransitivity; last eapply wp_lift_pure_step with (φ := λ e', e' = e1.[e0/]); last first. - intros ? ? ? ? Hstep. inversion_clear Hstep; done. - intros ?. do 3 eexists. econstructor; eassumption. - reflexivity. - apply later_mono, forall_intro=>e1'. apply impl_intro_l. by apply const_elim_l=>->. Qed. Lemma wp_case_inr e0 v0 e1 e2 E Q : e2v e0 = Some v0 → ▷wp (Σ:=Σ) E e2.[e0/] Q ⊑ wp (Σ:=Σ) E (Case (InjR e0) e1 e2) Q. Proof. intros Hv0. etransitivity; last eapply wp_lift_pure_step with (φ := λ e', e' = e2.[e0/]); last first. - intros ? ? ? ? Hstep. inversion_clear Hstep; done. - intros ?. do 3 eexists. econstructor; eassumption. - reflexivity. - apply later_mono, forall_intro=>e2'. apply impl_intro_l. by apply const_elim_l=>->. Qed. (** Some stateless axioms that incorporate bind *) Lemma wp_let e1 e2 E Q : wp (Σ:=Σ) E e1 (λ v, ▷wp (Σ:=Σ) E (e2.[v2e v/]) Q) ⊑ wp (Σ:=Σ) E (Let e1 e2) Q. Proof. rewrite -(wp_bind _ _ (LetCtx EmptyCtx e2)). apply wp_mono=>v. rewrite -wp_lam //. by rewrite v2v. Qed.