diff --git a/theories/base.v b/theories/base.v index 40e58b18e03938ce2d4609b283940333f6b41dfe..b046cf8e814a59f69444b04f98611140c266b996 100644 --- a/theories/base.v +++ b/theories/base.v @@ -785,7 +785,7 @@ Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o)) (** In this section we define operational type classes for the operations on maps. In the file [fin_maps] we will axiomatize finite maps. The function look up [m !! k] should yield the element at key [k] in [m]. *) -Class Lookup (K : Type) (M : Type → Type) := lookup : ∀ {A}, K → M A → option A. +Class Lookup (K A M : Type) := lookup: K → M → option A. Instance: Params (@lookup) 4. Notation "m !! i" := (lookup i m) (at level 20) : C_scope. Notation "(!!)" := lookup (only parsing) : C_scope. @@ -794,14 +794,13 @@ Notation "(!! i )" := (lookup i) (only parsing) : C_scope. Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch. (** The singleton map *) -Class SingletonM (K : Type) (M : Type → Type) := - singletonM : ∀ {A}, K → A → M A. +Class SingletonM K A M := singletonM: K → A → M. Instance: Params (@singletonM) 5. Notation "{[ k := a ]}" := (singletonM k a) (at level 1) : C_scope. (** The function insert [<[k:=a]>m] should update the element at key [k] with value [a] in [m]. *) -Class Insert (K : Type) (M : Type → Type) := insert : ∀ {A}, K → A → M A → M A. +Class Insert (K A M : Type) := insert: K → A → M → M. Instance: Params (@insert) 5. Notation "<[ k := a ]>" := (insert k a) (at level 5, right associativity, format "<[ k := a ]>") : C_scope. @@ -810,14 +809,13 @@ Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch. (** The function delete [delete k m] should delete the value at key [k] in [m]. If the key [k] is not a member of [m], the original map should be returned. *) -Class Delete (K : Type) (M : Type → Type) := delete : ∀ {A}, K → M A → M A. -Instance: Params (@delete) 5. -Arguments delete _ _ _ _ !_ !_ / : simpl nomatch. +Class Delete (K M : Type) := delete: K → M → M. +Instance: Params (@delete) 4. +Arguments delete _ _ _ !_ !_ / : simpl nomatch. (** The function [alter f k m] should update the value at key [k] using the function [f], which is called with the original value. *) -Class Alter (K : Type) (M : Type → Type) := - alter : ∀ {A}, (A → A) → K → M A → M A. +Class Alter (K A M : Type) := alter: (A → A) → K → M → M. Instance: Params (@alter) 5. Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch. @@ -825,16 +823,16 @@ Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch. function [f], which is called with the original value at key [k] or [None] if [k] is not a member of [m]. The value at [k] should be deleted if [f] yields [None]. *) -Class PartialAlter (K : Type) (M : Type → Type) := - partial_alter : ∀ {A}, (option A → option A) → K → M A → M A. +Class PartialAlter (K A M : Type) := + partial_alter: (option A → option A) → K → M → M. Instance: Params (@partial_alter) 4. Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch. (** The function [dom C m] should yield the domain of [m]. That is a finite collection of type [C] that contains the keys that are a member of [m]. *) -Class Dom (M : Type → Type) (C : Type) := dom : ∀ {A}, M A → C. -Instance: Params (@dom) 4. -Arguments dom {_} _ {_ _} !_ / : simpl nomatch, clear implicits. +Class Dom (M C : Type) := dom: M → C. +Instance: Params (@dom) 3. +Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits. (** The function [merge f m1 m2] should merge the maps [m1] and [m2] by constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*) @@ -846,27 +844,39 @@ Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch. (** The function [union_with f m1 m2] is supposed to yield the union of [m1] and [m2] using the function [f] to combine values of members that are in both [m1] and [m2]. *) -Class UnionWith (M : Type → Type) := - union_with : ∀ {A}, (A → A → option A) → M A → M A → M A. +Class UnionWith (A M : Type) := + union_with: (A → A → option A) → M → M → M. Instance: Params (@union_with) 3. Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch. (** Similarly for intersection and difference. *) -Class IntersectionWith (M : Type → Type) := - intersection_with : ∀ {A}, (A → A → option A) → M A → M A → M A. +Class IntersectionWith (A M : Type) := + intersection_with: (A → A → option A) → M → M → M. Instance: Params (@intersection_with) 3. Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch. -Class DifferenceWith (M : Type → Type) := - difference_with : ∀ {A}, (A → A → option A) → M A → M A → M A. +Class DifferenceWith (A M : Type) := + difference_with: (A → A → option A) → M → M → M. Instance: Params (@difference_with) 3. Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch. -Definition intersection_with_list `{IntersectionWith M} {A} - (f : A → A → option A) : M A → list (M A) → M A := - fold_right (intersection_with f). +Definition intersection_with_list `{IntersectionWith A M} + (f : A → A → option A) : M → list M → M := fold_right (intersection_with f). Arguments intersection_with_list _ _ _ _ _ !_ /. +Class LookupE (E K A M : Type) := lookupE: E → K → M → option A. +Instance: Params (@lookupE) 6. +Notation "m !!{ Γ } i" := (lookupE Γ i m) + (at level 20, format "m !!{ Γ } i") : C_scope. +Notation "(!!{ Γ } )" := (lookupE Γ) (only parsing, Γ at level 1) : C_scope. +Arguments lookupE _ _ _ _ _ _ !_ !_ / : simpl nomatch. + +Class InsertE (E K A M : Type) := insertE: E → K → A → M → M. +Instance: Params (@insertE) 6. +Notation "<[ k := a ]{ Γ }>" := (insertE Γ k a) + (at level 5, right associativity, format "<[ k := a ]{ Γ }>") : C_scope. +Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch. + (** * Axiomatization of collections *) (** The class [SimpleCollection A C] axiomatizes a collection of type [C] with diff --git a/theories/coPset.v b/theories/coPset.v index 2c5d25a26ca86f099b17cef2c211dff627e60f9e..b1086528f545827ae046ea7731f766a8d7ba1c90 100644 --- a/theories/coPset.v +++ b/theories/coPset.v @@ -326,13 +326,13 @@ Proof. Qed. (** * Domain of finite maps *) -Instance Pmap_dom_coPset : Dom Pmap coPset := λ A m, of_Pset (dom _ m). +Instance Pmap_dom_coPset {A} : Dom (Pmap A) coPset := λ m, of_Pset (dom _ m). Instance Pmap_dom_coPset_spec: FinMapDom positive Pmap coPset. Proof. split; try apply _; intros A m i; unfold dom, Pmap_dom_coPset. by rewrite elem_of_of_Pset, elem_of_dom. Qed. -Instance gmap_dom_coPset : Dom (gmap positive) coPset := λ A m, +Instance gmap_dom_coPset {A} : Dom (gmap positive A) coPset := λ m, of_gset (dom _ m). Instance gmap_dom_coPset_spec: FinMapDom positive (gmap positive) coPset. Proof. diff --git a/theories/fin_map_dom.v b/theories/fin_map_dom.v index e17c7251fb85a512fb4af93f540c7b0c62ffb1b9..c3bfa075b398e2501de771a2171034ca9ba62117 100644 --- a/theories/fin_map_dom.v +++ b/theories/fin_map_dom.v @@ -5,9 +5,10 @@ maps. We provide such an axiomatization, instead of implementing the domain function in a generic way, to allow more efficient implementations. *) From stdpp Require Export collections fin_maps. -Class FinMapDom K M D `{FMap M, Lookup K M, ∀ A, Empty (M A), PartialAlter K M, - OMap M, Merge M, FinMapToList K M, ∀ i j : K, Decision (i = j), - Dom M D, ElemOf K D, Empty D, Singleton K D, +Class FinMapDom K M D `{FMap M, + ∀ A, Lookup K A (M A), ∀ A, Empty (M A), ∀ A, PartialAlter K A (M A), + OMap M, Merge M, ∀ A, FinMapToList K A (M A), ∀ i j : K, Decision (i = j), + ∀ A, Dom (M A) D, ElemOf K D, Empty D, Singleton K D, Union D, Intersection D, Difference D} := { finmap_dom_map :>> FinMap K M; finmap_dom_collection :>> Collection K D; diff --git a/theories/fin_maps.v b/theories/fin_maps.v index a0ffd1d5fb98e2334c8995edb6d972586de9a5d2..da4e7f9940082143ae5560ef1380a5354fe6d927 100644 --- a/theories/fin_maps.v +++ b/theories/fin_maps.v @@ -23,11 +23,11 @@ prove well founded recursion on finite maps. *) which enables us to give a generic implementation of [union_with], [intersection_with], and [difference_with]. *) -Class FinMapToList (K : Type) (M : Type → Type) := - map_to_list : ∀ {A}, M A → list (K * A). +Class FinMapToList K A M := map_to_list: M → list (K * A). -Class FinMap K M `{FMap M, Lookup K M, ∀ A, Empty (M A), PartialAlter K M, - OMap M, Merge M, FinMapToList K M, ∀ i j : K, Decision (i = j)} := { +Class FinMap K M `{FMap M, ∀ A, Lookup K A (M A), ∀ A, Empty (M A), ∀ A, + PartialAlter K A (M A), OMap M, Merge M, ∀ A, FinMapToList K A (M A), + ∀ i j : K, Decision (i = j)} := { map_eq {A} (m1 m2 : M A) : (∀ i, m1 !! i = m2 !! i) → m1 = m2; lookup_empty {A} i : (∅ : M A) !! i = None; lookup_partial_alter {A} f (m : M A) i : @@ -48,47 +48,47 @@ Class FinMap K M `{FMap M, Lookup K M, ∀ A, Empty (M A), PartialAlter K M, finite map implementations. These generic implementations do not cause a significant performance loss to make including them in the finite map interface worthwhile. *) -Instance map_insert `{PartialAlter K M} : Insert K M := - λ A i x, partial_alter (λ _, Some x) i. -Instance map_alter `{PartialAlter K M} : Alter K M := - λ A f, partial_alter (fmap f). -Instance map_delete `{PartialAlter K M} : Delete K M := - λ A, partial_alter (λ _, None). -Instance map_singleton `{PartialAlter K M, ∀ A, Empty (M A)} : SingletonM K M := - λ A i x, <[i:=x]> ∅. +Instance map_insert `{PartialAlter K A M} : Insert K A M := + λ i x, partial_alter (λ _, Some x) i. +Instance map_alter `{PartialAlter K A M} : Alter K A M := + λ f, partial_alter (fmap f). +Instance map_delete `{PartialAlter K A M} : Delete K M := + partial_alter (λ _, None). +Instance map_singleton `{PartialAlter K A M, Empty M} : + SingletonM K A M := λ i x, <[i:=x]> ∅. -Definition map_of_list `{Insert K M, Empty (M A)} : list (K * A) → M A := +Definition map_of_list `{Insert K A M, Empty M} : list (K * A) → M := fold_right (λ p, <[p.1:=p.2]>) ∅. -Definition map_of_collection `{Elements K C, Insert K M, Empty (M A)} - (f : K → option A) (X : C) : M A := +Definition map_of_collection `{Elements K C, Insert K A M, Empty M} + (f : K → option A) (X : C) : M := map_of_list (omap (λ i, (i,) <$> f i) (elements X)). -Instance map_union_with `{Merge M} : UnionWith M := - λ A f, merge (union_with f). -Instance map_intersection_with `{Merge M} : IntersectionWith M := - λ A f, merge (intersection_with f). -Instance map_difference_with `{Merge M} : DifferenceWith M := - λ A f, merge (difference_with f). +Instance map_union_with `{Merge M} {A} : UnionWith A (M A) := + λ f, merge (union_with f). +Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) := + λ f, merge (intersection_with f). +Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) := + λ f, merge (difference_with f). -Instance map_equiv `{Lookup K M, Equiv A} : Equiv (M A) | 18 := +Instance map_equiv `{∀ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 := λ m1 m2, ∀ i, m1 !! i ≡ m2 !! i. (** The relation [intersection_forall R] on finite maps describes that the relation [R] holds for each pair in the intersection. *) -Definition map_Forall `{Lookup K M} {A} (P : K → A → Prop) : M A → Prop := +Definition map_Forall `{Lookup K A M} (P : K → A → Prop) : M → Prop := λ m, ∀ i x, m !! i = Some x → P i x. -Definition map_relation `{Lookup K M} {A B} (R : A → B → Prop) +Definition map_relation `{∀ A, Lookup K A (M A)} {A B} (R : A → B → Prop) (P : A → Prop) (Q : B → Prop) (m1 : M A) (m2 : M B) : Prop := ∀ i, option_relation R P Q (m1 !! i) (m2 !! i). -Definition map_included `{Lookup K M} {A} +Definition map_included `{∀ A, Lookup K A (M A)} {A} (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True). -Definition map_disjoint `{Lookup K M} {A} : relation (M A) := +Definition map_disjoint `{∀ A, Lookup K A (M A)} {A} : relation (M A) := map_relation (λ _ _, False) (λ _, True) (λ _, True). Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope. Hint Extern 0 (_ ⊥ₘ _) => symmetry; eassumption. Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope. Notation "(.⊥ₘ m )" := (λ m2, m2 ⊥ₘ m) (only parsing) : C_scope. -Instance map_subseteq `{Lookup K M} {A} : SubsetEq (M A) := +Instance map_subseteq `{∀ A, Lookup K A (M A)} {A} : SubsetEq (M A) := map_included (=). (** The union of two finite maps only has a meaningful definition for maps @@ -106,8 +106,8 @@ Instance map_difference `{Merge M} {A} : Difference (M A) := (** A stronger variant of map that allows the mapped function to use the index of the elements. Implemented by conversion to lists, so not very efficient. *) -Definition map_imap `{Insert K M, ∀ A, Empty (M A), - FinMapToList K M} {A B} (f : K → A → option B) (m : M A) : M B := +Definition map_imap `{∀ A, Insert K A (M A), ∀ A, Empty (M A), + ∀ A, FinMapToList K A (M A)} {A B} (f : K → A → option B) (m : M A) : M B := map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)). (** * Theorems *) @@ -124,25 +124,27 @@ Section setoid. - by intros m1 m2 ? i. - by intros m1 m2 m3 ?? i; trans (m2 !! i). Qed. - Global Instance lookup_proper (i: K) : Proper ((≡) ==> (≡)) (lookup (M:=M) i). + Global Instance lookup_proper (i : K) : + Proper ((≡) ==> (≡)) (lookup (M:=M A) i). Proof. by intros m1 m2 Hm. Qed. Global Instance partial_alter_proper : - Proper (((≡) ==> (≡)) ==> (=) ==> (≡) ==> (≡)) (partial_alter (M:=M)). + Proper (((≡) ==> (≡)) ==> (=) ==> (≡) ==> (≡)) (partial_alter (M:=M A)). Proof. by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|]; rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done; try apply Hf; apply lookup_proper. Qed. Global Instance insert_proper (i : K) : - Proper ((≡) ==> (≡) ==> (≡)) (insert (M:=M) i). + Proper ((≡) ==> (≡) ==> (≡)) (insert (M:=M A) i). Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed. - Global Instance singleton_proper (i : K) : - Proper ((≡) ==> (≡)) (singletonM (M:=M) i). + Global Instance singleton_proper k : + Proper ((≡) ==> (≡)) (singletonM k : A → M A). Proof. by intros ???; apply insert_proper. Qed. - Global Instance delete_proper (i: K) : Proper ((≡) ==> (≡)) (delete (M:=M) i). + Global Instance delete_proper (i : K) : + Proper ((≡) ==> (≡)) (delete (M:=M A) i). Proof. by apply partial_alter_proper; [constructor|]. Qed. Global Instance alter_proper : - Proper (((≡) ==> (≡)) ==> (=) ==> (≡) ==> (≡)) (alter (M:=M)). + Proper (((≡) ==> (≡)) ==> (=) ==> (≡) ==> (≡)) (alter (A:=A) (M:=M A)). Proof. intros ?? Hf; apply partial_alter_proper. by destruct 1; constructor; apply Hf. @@ -154,7 +156,7 @@ Section setoid. by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf. Qed. Global Instance union_with_proper : - Proper (((≡) ==> (≡) ==> (≡)) ==> (≡) ==> (≡) ==>(≡)) (union_with (M:=M)). + Proper (((≡) ==> (≡) ==> (≡)) ==> (≡) ==> (≡) ==>(≡)) (union_with (M:=M A)). Proof. intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto. by do 2 destruct 1; first [apply Hf | constructor]. diff --git a/theories/functions.v b/theories/functions.v index a34f81fe97e55423e6a54dbc8896055c4858d909..ebc83e2d16f2e3bcb51bb6e346c3b37418d239d1 100644 --- a/theories/functions.v +++ b/theories/functions.v @@ -2,10 +2,10 @@ From stdpp Require Export base tactics. Section definitions. Context {A T : Type} `{∀ a b : A, Decision (a = b)}. - Definition fn_insert (a : A) (t : T) (f : A → T) : A → T := λ b, - if decide (a = b) then t else f b. - Definition fn_alter (g : T → T) (a : A) (f : A → T) : A → T := λ b, - if decide (a = b) then g (f a) else f b. + Global Instance fn_insert : Insert A T (A → T) := + λ a t f b, if decide (a = b) then t else f b. + Global Instance fn_alter : Alter A T (A → T) := + λ (g : T → T) a f b, if decide (a = b) then g (f a) else f b. End definitions. (* TODO: For now, we only have the properties here that do not need a notion @@ -14,17 +14,17 @@ End definitions. Section functions. Context {A T : Type} `{∀ a b : A, Decision (a = b)}. - Lemma fn_lookup_insert (f : A → T) a t : fn_insert a t f a = t. - Proof. unfold fn_insert. by destruct (decide (a = a)). Qed. + Lemma fn_lookup_insert (f : A → T) a t : <[a:=t]>f a = t. + Proof. unfold insert, fn_insert. by destruct (decide (a = a)). Qed. Lemma fn_lookup_insert_rev (f : A → T) a t1 t2 : - fn_insert a t1 f a = t2 → t1 = t2. + <[a:=t1]>f a = t2 → t1 = t2. Proof. rewrite fn_lookup_insert. congruence. Qed. - Lemma fn_lookup_insert_ne (f : A → T) a b t : a ≠b → fn_insert a t f b = f b. - Proof. unfold fn_insert. by destruct (decide (a = b)). Qed. + Lemma fn_lookup_insert_ne (f : A → T) a b t : a ≠b → <[a:=t]>f b = f b. + Proof. unfold insert, fn_insert. by destruct (decide (a = b)). Qed. - Lemma fn_lookup_alter (g : T → T) (f : A → T) a : fn_alter g a f a = g (f a). - Proof. unfold fn_alter. by destruct (decide (a = a)). Qed. + Lemma fn_lookup_alter (g : T → T) (f : A → T) a : alter g a f a = g (f a). + Proof. unfold alter, fn_alter. by destruct (decide (a = a)). Qed. Lemma fn_lookup_alter_ne (g : T → T) (f : A → T) a b : - a ≠b → fn_alter g a f b = f b. - Proof. unfold fn_alter. by destruct (decide (a = b)). Qed. + a ≠b → alter g a f b = f b. + Proof. unfold alter, fn_alter. by destruct (decide (a = b)). Qed. End functions. diff --git a/theories/gmap.v b/theories/gmap.v index aa48152231b99494e874f16a6f3bfb404ddd3e41..88f62e36e4a4dff78a3cd68c564852288bd80b33 100644 --- a/theories/gmap.v +++ b/theories/gmap.v @@ -30,7 +30,7 @@ Proof. Defined. (** * Operations on the data structure *) -Instance gmap_lookup `{Countable K} : Lookup K (gmap K) := λ A i m, +Instance gmap_lookup `{Countable K} {A} : Lookup K A (gmap K A) := λ i m, let (m,_) := m in m !! encode i. Instance gmap_empty `{Countable K} {A} : Empty (gmap K A) := GMap ∅ I. Lemma gmap_partial_alter_wf `{Countable K} {A} (f : option A → option A) m i : @@ -40,7 +40,8 @@ Proof. - rewrite decode_encode; eauto. - rewrite lookup_partial_alter_ne by done. by apply Hm. Qed. -Instance gmap_partial_alter `{Countable K} : PartialAlter K (gmap K) := λ A f i m, +Instance gmap_partial_alter `{Countable K} {A} : + PartialAlter K A (gmap K A) := λ f i m, let (m,Hm) := m in GMap (partial_alter f (encode i) m) (bool_decide_pack _ (gmap_partial_alter_wf f m i (bool_decide_unpack _ Hm))). @@ -69,7 +70,7 @@ Instance gmap_merge `{Countable K} : Merge (gmap K) := λ A B C f m1 m2, let f' o1 o2 := match o1, o2 with None, None => None | _, _ => f o1 o2 end in GMap (merge f' m1 m2) (bool_decide_pack _ (gmap_merge_wf f _ _ (bool_decide_unpack _ Hm1) (bool_decide_unpack _ Hm2))). -Instance gmap_to_list `{Countable K} : FinMapToList K (gmap K) := λ A m, +Instance gmap_to_list `{Countable K} {A} : FinMapToList K A (gmap K A) := λ m, let (m,_) := m in omap (λ ix : positive * A, let (i,x) := ix in (,x) <$> decode i) (map_to_list m). @@ -113,7 +114,7 @@ Qed. (** * Finite sets *) Notation gset K := (mapset (gmap K)). -Instance gset_dom `{Countable K} : Dom (gmap K) (gset K) := mapset_dom. +Instance gset_dom `{Countable K} {A} : Dom (gmap K A) (gset K) := mapset_dom. Instance gset_dom_spec `{Countable K} : FinMapDom K (gmap K) (gset K) := mapset_dom_spec. diff --git a/theories/list.v b/theories/list.v index 2608cebfbb5dc933d7d283b422b788b108c0514a..59b7bda9e163ca67ae0ac65fc67e7cb712b78b87 100644 --- a/theories/list.v +++ b/theories/list.v @@ -57,15 +57,15 @@ Existing Instance list_equiv. (** The operation [l !! i] gives the [i]th element of the list [l], or [None] in case [i] is out of bounds. *) -Instance list_lookup : Lookup nat list := - fix go A i l {struct l} : option A := let _ : Lookup _ _ := @go in +Instance list_lookup {A} : Lookup nat A (list A) := + fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in match l with | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end end. (** The operation [alter f i l] applies the function [f] to the [i]th element of [l]. In case [i] is out of bounds, the list is returned unchanged. *) -Instance list_alter : Alter nat list := λ A f, +Instance list_alter {A} : Alter nat A (list A) := λ f, fix go i l {struct l} := match l with | [] => [] @@ -74,8 +74,8 @@ Instance list_alter : Alter nat list := λ A f, (** The operation [<[i:=x]> l] overwrites the element at position [i] with the value [x]. In case [i] is out of bounds, the list is returned unchanged. *) -Instance list_insert : Insert nat list := - fix go A i y l {struct l} := let _ : Insert _ _ := @go in +Instance list_insert {A} : Insert nat A (list A) := + fix go i y l {struct l} := let _ : Insert _ _ _ := @go in match l with | [] => [] | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end @@ -90,11 +90,11 @@ Instance: Params (@list_inserts) 1. (** The operation [delete i l] removes the [i]th element of [l] and moves all consecutive elements one position ahead. In case [i] is out of bounds, the list is returned unchanged. *) -Instance list_delete : Delete nat list := - fix go A (i : nat) (l : list A) {struct l} : list A := +Instance list_delete {A} : Delete nat (list A) := + fix go (i : nat) (l : list A) {struct l} : list A := match l with | [] => [] - | x :: l => match i with 0 => l | S i => x :: @delete _ _ go _ i l end + | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end end. (** The function [option_list o] converts an element [Some x] into the @@ -2733,13 +2733,13 @@ Section setoid. Global Instance drop_proper n : Proper ((≡) ==> (≡)) (@drop A n). Proof. induction n; destruct 1; simpl; try constructor; auto. Qed. Global Instance list_lookup_proper i : - Proper ((≡) ==> (≡)) (lookup (M:=list) i). + Proper ((≡) ==> (≡)) (lookup (M:=list A) i). Proof. induction i; destruct 1; simpl; f_equiv; auto. Qed. Global Instance list_alter_proper f i : - Proper ((≡) ==> (≡)) f → Proper ((≡) ==> (≡)) (alter (M:=list) f i). + Proper ((≡) ==> (≡)) f → Proper ((≡) ==> (≡)) (alter (M:=list A) f i). Proof. intros. induction i; destruct 1; constructor; eauto. Qed. Global Instance list_insert_proper i : - Proper ((≡) ==> (≡) ==> (≡)) (insert (M:=list) i). + Proper ((≡) ==> (≡) ==> (≡)) (insert (M:=list A) i). Proof. intros ???; induction i; destruct 1; constructor; eauto. Qed. Global Instance list_inserts_proper i : Proper ((≡) ==> (≡) ==> (≡)) (@list_inserts A i). @@ -2748,7 +2748,7 @@ Section setoid. induction Hk; intros ????; simpl; try f_equiv; naive_solver. Qed. Global Instance list_delete_proper i : - Proper ((≡) ==> (≡)) (delete (M:=list) i). + Proper ((≡) ==> (≡)) (delete (M:=list A) i). Proof. induction i; destruct 1; try constructor; eauto. Qed. Global Instance option_list_proper : Proper ((≡) ==> (≡)) (@option_list A). Proof. destruct 1; by constructor. Qed. diff --git a/theories/mapset.v b/theories/mapset.v index 2ecdf0e24ff93363486ab76e3b4776add8c31607..b75e6140f5bc76e5c6bba672f10caa291650cce3 100644 --- a/theories/mapset.v +++ b/theories/mapset.v @@ -118,7 +118,7 @@ Proof. - destruct (Is_true_reflect (f a)); naive_solver. - naive_solver. Qed. -Instance mapset_dom : Dom M (mapset M) := λ A, mapset_dom_with (λ _, true). +Instance mapset_dom {A} : Dom (M A) (mapset M) := mapset_dom_with (λ _, true). Instance mapset_dom_spec: FinMapDom K M (mapset M). Proof. split; try apply _. intros. unfold dom, mapset_dom, is_Some. diff --git a/theories/natmap.v b/theories/natmap.v index 600fbce1cd7b8869c1483d23355a758e4c56e36f..9c7e89952cbd461ea895bb67d7a8a67359fb38f1 100644 --- a/theories/natmap.v +++ b/theories/natmap.v @@ -44,7 +44,7 @@ Global Instance natmap_eq_dec `{∀ x y : A, Decision (x = y)} end. Instance natmap_empty {A} : Empty (natmap A) := NatMap [] I. -Instance natmap_lookup : Lookup nat natmap := λ A i m, +Instance natmap_lookup {A} : Lookup nat A (natmap A) := λ i m, let (l,_) := m in mjoin (l !! i). Fixpoint natmap_singleton_raw {A} (i : nat) (x : A) : natmap_raw A := @@ -92,7 +92,7 @@ Proof. revert i. induction l; [intro | intros [|?]]; simpl; repeat case_match; eauto using natmap_singleton_wf, natmap_cons_canon_wf, natmap_wf_inv. Qed. -Instance natmap_alter : PartialAlter nat natmap := λ A f i m, +Instance natmap_alter {A} : PartialAlter nat A (natmap A) := λ f i m, let (l,Hl) := m in NatMap _ (natmap_alter_wf f i l Hl). Lemma natmap_lookup_alter_raw {A} (f : option A → option A) i l : mjoin (natmap_alter_raw f i l !! i) = f (mjoin (l !! i)). @@ -188,7 +188,7 @@ Proof. revert i. induction l as [|[?|] ? IH]; simpl; try constructor; auto. rewrite natmap_elem_of_to_list_raw_aux. intros (?&?&?). lia. Qed. -Instance natmap_to_list : FinMapToList nat natmap := λ A m, +Instance natmap_to_list {A} : FinMapToList nat A (natmap A) := λ m, let (l,_) := m in natmap_to_list_raw 0 l. Definition natmap_map_raw {A B} (f : A → B) : natmap_raw A → natmap_raw B := @@ -256,7 +256,7 @@ Qed. (** Finally, we can construct sets of [nat]s satisfying extensional equality. *) Notation natset := (mapset natmap). -Instance natmap_dom : Dom natmap natset := mapset_dom. +Instance natmap_dom {A} : Dom (natmap A) natset := mapset_dom. Instance: FinMapDom nat natmap natset := mapset_dom_spec. (* Fixpoint avoids this definition from being unfolded *) diff --git a/theories/nmap.v b/theories/nmap.v index 9d56d9c835adbc84e7e2600ac9bd4a908ef5e2f0..c839a659b43d616f38e6518154e87479f7999801 100644 --- a/theories/nmap.v +++ b/theories/nmap.v @@ -22,17 +22,17 @@ Proof. Defined. Instance Nempty {A} : Empty (Nmap A) := NMap None ∅. Global Opaque Nempty. -Instance Nlookup : Lookup N Nmap := λ A i t, +Instance Nlookup {A} : Lookup N A (Nmap A) := λ i t, match i with | N0 => Nmap_0 t | Npos p => Nmap_pos t !! p end. -Instance Npartial_alter : PartialAlter N Nmap := λ A f i t, +Instance Npartial_alter {A} : PartialAlter N A (Nmap A) := λ f i t, match i, t with | N0, NMap o t => NMap (f o) t | Npos p, NMap o t => NMap o (partial_alter f p t) end. -Instance Nto_list : FinMapToList N Nmap := λ A t, +Instance Nto_list {A} : FinMapToList N A (Nmap A) := λ t, match t with | NMap o t => default [] o (λ x, [(0,x)]) ++ (prod_map Npos id <$> map_to_list t) @@ -82,7 +82,7 @@ Qed. (** * Finite sets *) (** We construct sets of [N]s satisfying extensional equality. *) Notation Nset := (mapset Nmap). -Instance Nmap_dom : Dom Nmap Nset := mapset_dom. +Instance Nmap_dom {A} : Dom (Nmap A) Nset := mapset_dom. Instance: FinMapDom N Nmap Nset := mapset_dom_spec. (** * Fresh numbers *) diff --git a/theories/option.v b/theories/option.v index cefc66683141de8eb34e38e5d52727e053b7d257..5af4b5a039438871f4996114956b1acd1153b071 100644 --- a/theories/option.v +++ b/theories/option.v @@ -239,16 +239,16 @@ Instance maybe_Some {A} : Maybe (@Some A) := id. Arguments maybe_Some _ !_ /. (** * Union, intersection and difference *) -Instance option_union_with : UnionWith option := λ A f mx my, +Instance option_union_with {A} : UnionWith A (option A) := λ f mx my, match mx, my with | Some x, Some y => f x y | Some x, None => Some x | None, Some y => Some y | None, None => None end. -Instance option_intersection_with : IntersectionWith option := λ A f mx my, - match mx, my with Some x, Some y => f x y | _, _ => None end. -Instance option_difference_with : DifferenceWith option := λ A f mx my, +Instance option_intersection_with {A} : IntersectionWith A (option A) := + λ f mx my, match mx, my with Some x, Some y => f x y | _, _ => None end. +Instance option_difference_with {A} : DifferenceWith A (option A) := λ f mx my, match mx, my with | Some x, Some y => f x y | Some x, None => Some x diff --git a/theories/pmap.v b/theories/pmap.v index 5dcfcafec09b3576e1f774dcadaf1e11aa3f5a44..38ee622698c5cd254ce994ca6bab91ea4de081e6 100644 --- a/theories/pmap.v +++ b/theories/pmap.v @@ -52,9 +52,9 @@ Local Hint Resolve PNode_wf. (** Operations *) Instance Pempty_raw {A} : Empty (Pmap_raw A) := PLeaf. -Instance Plookup_raw : Lookup positive Pmap_raw := - fix go A (i : positive) (t : Pmap_raw A) {struct t} : option A := - let _ : Lookup _ _ := @go in +Instance Plookup_raw {A} : Lookup positive A (Pmap_raw A) := + fix go (i : positive) (t : Pmap_raw A) {struct t} : option A := + let _ : Lookup _ _ _ := @go in match t with | PLeaf => None | PNode o l r => match i with 1 => o | i~0 => l !! i | i~1 => r !! i end @@ -273,12 +273,12 @@ Instance Pmap_eq_dec `{∀ x y : A, Decision (x = y)} | right H => right (H ∘ proj1 (Pmap_eq m1 m2)) end. Instance Pempty {A} : Empty (Pmap A) := PMap ∅ I. -Instance Plookup : Lookup positive Pmap := λ A i m, pmap_car m !! i. -Instance Ppartial_alter : PartialAlter positive Pmap := λ A f i m, +Instance Plookup {A} : Lookup positive A (Pmap A) := λ i m, pmap_car m !! i. +Instance Ppartial_alter {A} : PartialAlter positive A (Pmap A) := λ f i m, let (t,Ht) := m in PMap (partial_alter f i t) (Ppartial_alter_wf f i _ Ht). Instance Pfmap : FMap Pmap := λ A B f m, let (t,Ht) := m in PMap (f <$> t) (Pfmap_wf f _ Ht). -Instance Pto_list : FinMapToList positive Pmap := λ A m, +Instance Pto_list {A} : FinMapToList positive A (Pmap A) := λ m, let (t,Ht) := m in Pto_list_raw 1 t []. Instance Pomap : OMap Pmap := λ A B f m, let (t,Ht) := m in PMap (omap f t) (Pomap_wf f _ Ht). @@ -305,7 +305,7 @@ Qed. (** * Finite sets *) (** We construct sets of [positives]s satisfying extensional equality. *) Notation Pset := (mapset Pmap). -Instance Pmap_dom : Dom Pmap Pset := mapset_dom. +Instance Pmap_dom {A} : Dom (Pmap A) Pset := mapset_dom. Instance: FinMapDom positive Pmap Pset := mapset_dom_spec. (** * Fresh numbers *) diff --git a/theories/zmap.v b/theories/zmap.v index 7ead0d0299b541895335ac8f2bdc23791ad046e4..a0644bfa58e9214aa9b67ab7db170574b0d0de8f 100644 --- a/theories/zmap.v +++ b/theories/zmap.v @@ -23,17 +23,17 @@ Proof. end; abstract congruence. Defined. Instance Zempty {A} : Empty (Zmap A) := ZMap None ∅ ∅. -Instance Zlookup : Lookup Z Zmap := λ A i t, +Instance Zlookup {A} : Lookup Z A (Zmap A) := λ i t, match i with | Z0 => Zmap_0 t | Zpos p => Zmap_pos t !! p | Zneg p => Zmap_neg t !! p end. -Instance Zpartial_alter : PartialAlter Z Zmap := λ A f i t, +Instance Zpartial_alter {A} : PartialAlter Z A (Zmap A) := λ f i t, match i, t with | Z0, ZMap o t t' => ZMap (f o) t t' | Zpos p, ZMap o t t' => ZMap o (partial_alter f p t) t' | Zneg p, ZMap o t t' => ZMap o t (partial_alter f p t') end. -Instance Zto_list : FinMapToList Z Zmap := λ A t, +Instance Zto_list {A} : FinMapToList Z A (Zmap A) := λ t, match t with | ZMap o t t' => default [] o (λ x, [(0,x)]) ++ (prod_map Zpos id <$> map_to_list t) ++ @@ -93,5 +93,5 @@ Qed. (** * Finite sets *) (** We construct sets of [Z]s satisfying extensional equality. *) Notation Zset := (mapset Zmap). -Instance Zmap_dom : Dom Zmap Zset := mapset_dom. +Instance Zmap_dom {A} : Dom (Zmap A) Zset := mapset_dom. Instance: FinMapDom Z Zmap Zset := mapset_dom_spec.