From 82aee3901037ad0635cb4384668b9c44fdb49eb5 Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Sat, 12 Mar 2016 13:25:01 +0100 Subject: [PATCH] docs: describe the part of the model that works for any UPred --- docs/algebra.tex | 4 +- docs/constructions.tex | 5 +- docs/derived.tex | 1 + docs/iris.sty | 2 +- docs/iris.tex | 4 +- docs/model.tex | 914 +++++++++++++++++++---------------------- 6 files changed, 428 insertions(+), 502 deletions(-) diff --git a/docs/algebra.tex b/docs/algebra.tex index 41916aead..8f278074f 100644 --- a/docs/algebra.tex +++ b/docs/algebra.tex @@ -2,6 +2,7 @@ \subsection{COFE} +This definition varies slightly from the original one in~\cite{catlogic}. \begin{defn}[Chain] Given some set $\cofe$ and an indexed family $({\nequiv{n}} \subseteq \cofe \times \cofe)_{n \in \mathbb{N}}$ of equivalence relations, a \emph{chain} is a function $c : \mathbb{N} \to \cofe$ such that $\All n, m. n \leq m \Ra c (m) \nequiv{n} c (n)$. \end{defn} @@ -94,7 +95,8 @@ Note that the composition of non-expansive (bi)functors is non-expansive, and th \All n, \melt, \meltB_1, \meltB_2.& \omit\rlap{$\melt \in \mval_n \land \melt \nequiv{n} \meltB_1 \mtimes \meltB_2 \Ra {}$} \\ &\Exists \meltC_1, \meltC_2. \melt = \meltC_1 \mtimes \meltC_2 \land \meltC_1 \nequiv{n} \meltB_1 \land \meltC_2 \nequiv{n} \meltB_2 \tagH{cmra-extend} \\ \text{where}\qquad\qquad\\ - \melt \mincl \meltB \eqdef{}& \Exists \meltC. \meltB = \melt \mtimes \meltC \tagH{cmra-incl} + \melt \mincl \meltB \eqdef{}& \Exists \meltC. \meltB = \melt \mtimes \meltC \tagH{cmra-incl}\\ + \melt \mincl[n] \meltB \eqdef{}& \Exists \meltC. \meltB \nequiv{n} \melt \mtimes \meltC \tagH{cmra-inclN} \end{align*} \end{defn} diff --git a/docs/constructions.tex b/docs/constructions.tex index 834f29af7..e7763440e 100644 --- a/docs/constructions.tex +++ b/docs/constructions.tex @@ -25,7 +25,7 @@ where $\mProp$ is the set of meta-level propositions, \eg Coq's \texttt{Prop}. $\UPred(-)$ is a locally non-expansive functor from $\CMRAs$ to $\COFEs$. One way to understand this definition is to re-write it a little. -We start by defining the COFE of \emph{step-indexed propositions}: +We start by defining the COFE of \emph{step-indexed propositions}: For every step-index, we proposition either holds or does not hold. \begin{align*} \SProp \eqdef{}& \psetdown{\mathbb{N}} \\ \eqdef{}& \setComp{\prop \in \pset{\mathbb{N}}}{ \All n, m. n \geq m \Ra n \in \prop \Ra m \in \prop } \\ @@ -149,6 +149,7 @@ We obtain the following frame-preserving updates: {\osshot(\melt) \mupd \setComp{\osshot(\meltB)}{\meltB \in \meltsB}} \end{mathpar} +%TODO: These need syncing with Coq % \subsection{Exclusive monoid} % Given a set $X$, we define a monoid such that at most one $x \in X$ can be owned. @@ -373,8 +374,6 @@ We obtain the following frame-preserving updates: % \subsection{STS with tokens monoid} % \label{sec:stsmon} -% \ralf{This needs syncing with the Coq development.} - % Given a state-transition system~(STS) $(\STSS, \ra)$, a set of tokens $\STSS$, and a labeling $\STSL: \STSS \ra \mathcal{P}(\STST)$ of \emph{protocol-owned} tokens for each state, we construct a monoid modeling an authoritative current state and permitting transitions given a \emph{bound} on the current state and a set of \emph{locally-owned} tokens. % The construction follows the idea of STSs as described in CaReSL \cite{caresl}. diff --git a/docs/derived.tex b/docs/derived.tex index 2df76084d..34b94a536 100644 --- a/docs/derived.tex +++ b/docs/derived.tex @@ -337,6 +337,7 @@ We can now derive the following rules for this derived form of the invariant ass {\knowInv\namesp\prop \proves \propB \vs[\mask] \propC} \end{mathpar} +% TODO: These need syncing with Coq % \subsection{STSs with interpretation}\label{sec:stsinterp} % Building on \Sref{sec:stsmon}, after constructing the monoid $\STSMon{\STSS}$ for a particular STS, we can use an invariant to tie an interpretation, $\pred : \STSS \to \Prop$, to the STS's current state, recovering CaReSL-style reasoning~\cite{caresl}. diff --git a/docs/iris.sty b/docs/iris.sty index 7f79af763..644b63455 100644 --- a/docs/iris.sty +++ b/docs/iris.sty @@ -221,7 +221,7 @@ \newcommand*{\knowInv}[2]{\boxedassert{#2}[#1]} \newcommand*{\ownGhost}[2]{\boxedassert[densely dashed]{#2}[#1]} \newcommand*{\ownGGhost}[1]{\boxedassert[densely dashed]{#1}} - +\newcommand{\ownM}[1]{\textlog{Own}(#1)} \newcommand{\ownPhys}[1]{\textlog{Phy}(#1)} %% View Shifts diff --git a/docs/iris.tex b/docs/iris.tex index eeb23de91..2b93d245a 100644 --- a/docs/iris.tex +++ b/docs/iris.tex @@ -33,8 +33,8 @@ \endgroup\clearpage\begingroup \input{logic} \endgroup\clearpage\begingroup -%\input{model} -%\endgroup\clearpage\begingroup +\input{model} +\endgroup\clearpage\begingroup \input{derived} \endgroup\clearpage\begingroup \printbibliography diff --git a/docs/model.tex b/docs/model.tex index 2a7fd7bc7..341deb1a8 100644 --- a/docs/model.tex +++ b/docs/model.tex @@ -1,527 +1,451 @@ \section{Model and semantics} -\ralf{What also needs to be done here: Define uPred and its later function; define black later; define the resource CMRA} - The semantics closely follows the ideas laid out in~\cite{catlogic}. -We just repeat some of the most important definitions here. - -An \emph{ordered family of equivalence relations} (o.f.e.\@) is a pair -$(X,(\nequiv{n})_{n\in\mathbb{N}})$, with $X$ a set, and each $\nequiv{n}$ -an equivalence relation over $X$ satisfying -\begin{itemize} - \item $\All x,x'. x \nequiv{0} x',$ - \item $\All x,x',n. x \nequiv{n+1} x' \implies x \nequiv{n} x',$ - \item $\All x,x'. (\All n. x\nequiv{n} x') \implies x = x'.$ -\end{itemize} -\a -Let $(X,(\nequivset{n}{X})_{n\in\mathbb{N}})$ and -$(Y,(\nequivset{n}{Y})_{n\in\mathbb{N}})$ be o.f.e.'s. A function $f: -X\to Y$ is \emph{non-expansive} if, for all $x$, $x'$ and $n$, -\[ -x \nequivset{n}{X} x' \implies -fx \nequivset{n}{Y} f x'. -\] -Let $(X,(\nequiv{n})_{n\in\mathbb{N}})$ be an o.f.e. -A sequence $(x_i)_{i\in\mathbb{N}}$ of elements in $X$ is a -\emph{chain} (aka \emph{Cauchy sequence}) if -\[ -\All k. \Exists n. \All i,j\geq n. x_i \nequiv{k} x_j. -\] -A \emph{limit} of a chain $(x_i)_{i\in\mathbb{N}}$ is an element -$x\in X$ such that -\[ -\All n. \Exists k. \All i\geq k. x_i \nequiv{n} x. -\] -An o.f.e.\ $(X,(\nequiv{n})_{n\in\mathbb{N}})$ is \emph{complete} -if all chains have a limit. -A complete o.f.e.\ is called a c.o.f.e.\ (pronounced ``coffee''). -When the family of equivalence relations is clear from context we -simply -write $X$ for a c.o.f.e.\ $(X,(\nequiv{n})_{n\in\mathbb{N}})$. - - -Let $\cal U$ be the category of c.o.f.e.'s and nonexpansive maps. - -Products and function spaces are defined as follows. -For c.o.f.e.'s $(X,(\nequivset{n}{X})_{n\in\mathbb{N}})$ and -$(Y,(\nequivset{n}{Y})_{n\in\mathbb{N}})$, their product -is -$(X\times Y, (\nequiv{n})_{n\in\mathbb{N}}),$ -where -\[ -(x,y) \nequiv{n} (x',y') \iff -x \nequiv{n} x' \land -y \nequiv{n} y'. -\] -The function space is -\[ -(\{\, f : X\to Y \mid f \text{ is non-expansive}\,\}, (\nequiv{n})_{n\in\mathbb{N}}), -\] -where -\[ -f \nequiv{n} g \iff -\All x. f(x) \nequiv{n} g(x). -\] - -For a c.o.f.e.\ $(X,(\nequiv{n}_{n\in\mathbb{N}}))$, -$\latert (X,(\nequiv{n}_{n\in\mathbb{N}}))$ is the c.o.f.e.\@ -$(X,(\nequivB{n}_{n\in\mathbb{N}}))$, where -\[ -x \nequivB{n} x' \iff \begin{cases} -\top &\IF n=0 \\ -x \nequiv{n-1} x' &\IF n>0 -\end{cases} -\] - -(Sidenote: $\latert$ extends to a functor on $\cal U$ by the identity -action on morphisms). - - -\subsection{Semantic structures: propositions} -\ralf{This needs to be synced with the Coq development again.} - -\[ -\begin{array}[t]{rcl} -% \protStatus &::=& \enabled \ALT \disabled \\[0.4em] -\textdom{Res} &\eqdef& -\{\, \rs = (\pres, \ghostRes) \mid -\pres \in \textdom{State} \uplus \{\munit\} \land \ghostRes \in \mcarp{\monoid} \,\} \\[0.5em] -(\pres, \ghostRes) \rtimes -(\pres', \ghostRes') &\eqdef& -\begin{cases} -(\pres, \ghostRes \mtimes \ghostRes') & \mbox{if $\pres' = \munit$ and $\ghostRes \mtimes \ghostRes' \neq \mzero$} \\ -(\pres', \ghostRes \mtimes \ghostRes') & \mbox{if $\pres = \munit$ and $\ghostRes \mtimes \ghostRes' \neq \mzero$} -\end{cases} -\\[0.5em] -% -\rs \leq \rs' & \eqdef & -\Exists \rs''. \rs' = \rs \rtimes \rs''\\[1em] -% -\UPred(\textdom{Res}) &\eqdef& -\{\, p \subseteq \mathbb{N} \times \textdom{Res} \mid -\All (k,\rs) \in p. -\All j\leq k. -\All \rs' \geq \rs. -(j,\rs')\in p \,\}\\[0.5em] -\restr{p}{k} &\eqdef& -\{\, (j, \rs) \in p \mid j < k \,\}\\[0.5em] -p \nequiv{n} q & \eqdef & \restr{p}{n} = \restr{q}{n}\\[1em] -% -\textdom{PreProp} & \cong & -\latert\big( \textdom{World} \monra \UPred(\textdom{Res}) -\big)\\[0.5em] -% -\textdom{World} & \eqdef & -\mathbb{N} \fpfn \textdom{PreProp}\\[0.5em] -% -w \nequiv{n} w' & \eqdef & -n = 0 \lor -\bigl(\dom(w) = \dom(w') \land \All i\in\dom(w). w(i) \nequiv{n} w'(i)\bigr) -\\[0.5em] -% -w \leq w' & \eqdef & -\dom(w) \subseteq \dom(w') \land \All i \in \dom(w). w(i) = w'(i) -\\[0.5em] -% -\textdom{Prop} & \eqdef & \textdom{World} \monra \UPred(\textdom{Res}) -\end{array} -\] - -For $p,q\in\UPred(\textdom{Res})$ with $p \nequiv{n} q$ defined -as above, $\UPred(\textdom{Res})$ is a -c.o.f.e. - -$\textdom{Prop}$ is a c.o.f.e., which exists by America and Rutten's theorem~\cite{America-Rutten:JCSS89}. -We do not need to consider how the object is constructed. -We only need the isomorphism, given by maps -\begin{align*} - \wIso &: \latert \bigl(World \monra \UPred(\textdom{Res})\bigr) \to \textdom{PreProp} \\ - \wIso^{-1} &: \textdom{PreProp} \to \latert \bigl(World \monra \UPred(\textdom{Res})\bigr) -\end{align*} -which are inverses to each other. -Note: this is an isomorphism in $\cal U$, i.e., $\wIso$ and -$\wIso^{-1}$ are both non-expansive. - -$\textdom{World}$ is a c.o.f.e.\ with the family of equivalence -relations defined as shown above. - -\subsection{Semantic structures: types and environments} - -For a set $X$, write $\Delta X$ for the discrete c.o.f.e.\ with $x \nequiv{n} -x'$ iff $n = 0$ or $x = x'$ -\[ -\begin{array}[t]{@{}l@{\ }c@{\ }l@{}} -\Sem{\textsort{Unit}} &\eqdef& \Delta \{ \star \} \\ -\Sem{\textsort{InvName}} &\eqdef& \Delta \mathbb{N} \\ -\Sem{\textsort{InvMask}} &\eqdef& \Delta \pset{\mathbb{N}} \\ -\Sem{\textsort{Monoid}} &\eqdef& \Delta |\monoid| -\end{array} -\qquad\qquad -\begin{array}[t]{@{}l@{\ }c@{\ }l@{}} -\Sem{\textsort{Val}} &\eqdef& \Delta \textdom{Val} \\ -\Sem{\textsort{Exp}} &\eqdef& \Delta \textdom{Exp} \\ -\Sem{\textsort{Ectx}} &\eqdef& \Delta \textdom{Ectx} \\ -\Sem{\textsort{State}} &\eqdef& \Delta \textdom{State} \\ -\end{array} -\qquad\qquad -\begin{array}[t]{@{}l@{\ }c@{\ }l@{}} -\Sem{\sort \times \sort'} &\eqdef& \Sem{\sort} \times \Sem{\sort} \\ -\Sem{\sort \to \sort'} &\eqdef& \Sem{\sort} \to \Sem{\sort} \\ -\Sem{\Prop} &\eqdef& \textdom{Prop} \\ -\end{array} -\] - -The balance of our signature $\Sig$ is interpreted as follows. -For each base type $\type$ not covered by the preceding table, we pick an object $X_\type$ in $\cal U$ and define -\[ -\Sem{\type} \eqdef X_\type -\] -For each function symbol $\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn$, we pick an arrow $\Sem{\sigfn} : \Sem{\type_1} \times \dots \times \Sem{\type_n} \to \Sem{\type_{n+1}}$ in $\cal U$. - -An environment $\vctx$ is interpreted as the set of -maps $\rho$, with $\dom(\rho) = \dom(\vctx)$ and -$\rho(x)\in\Sem{\vctx(x)}$, -and -$\rho\nequiv{n} \rho' \iff n=0 \lor \bigl(\dom(\rho)=\dom(\rho') \land -\All x\in\dom(\rho). \rho(x) \nequiv{n} \rho'(x)\bigr)$. - -\ralf{Re-check all the following definitions with the Coq development.} -%\typedsection{Validity}{valid : \pset{\textdom{Prop}} \in Sets} -% -%\begin{align*} -%valid(p) &\iff \All n \in \mathbb{N}. \All \rs \in \textdom{Res}. \All W \in \textdom{World}. (n, \rs) \in p(W) -%\end{align*} - -\typedsection{Later modality}{\later : \textdom{Prop} \to \textdom{Prop} \in {\cal U}} -\begin{align*} - \later p &\eqdef \Lam W. \{\, (n + 1, r) \mid (n, r) \in p(W) \,\} \cup \{\, (0, r) \mid r \in \textdom{Res} \,\} -\end{align*} -\begin{lem} - $\later{}$ is well-defined: $\later {p}$ is a valid proposition (this amounts to showing non-expansiveness), and $\later{}$ itself is a \emph{contractive} map. -\end{lem} +\subsection{Generic model of base logic} -\typedsection{Always modality}{\always{} : \textdom{Prop} \to \textdom{Prop} \in {\cal U}} +The base logic including equality, later, always, and a notion of ownership is defined on $\UPred(\monoid)$ for any CMRA $\monoid$. -\begin{align*} - \always{p} \eqdef \Lam W. \{\, (n, r) \mid (n, \munit) \in p(W) \,\} -\end{align*} -\begin{lem} - $\always{}$ is well-defined: $\always{p}$ is a valid proposition (this amounts to showing non-expansiveness), and $\always{}$ itself is a non-expansive map. -\end{lem} - -% PDS: p \Rightarrow q not defined. -%\begin{lem}\label{lem:always-impl-valid} -%\begin{align*} -%&\forall p, q \in \textdom{Prop}.~\\ -%&\qquad -% (\forall n \in \mathbb{N}.~\forall \rs \in \textdom{Res}.~\forall W \in \textdom{World}.~(n, \rs) \in p(W) \Rightarrow (n, \rs) \in q(W)) \Leftrightarrow~valid(\always{(p \Rightarrow q)}) -%\end{align*} -%\end{lem} - -\typedsection{Invariant definition}{inv : \Delta(\mathbb{N}) \times \textdom{Prop} \to \textdom{Prop} \in {\cal U}} -\begin{align*} - \mathit{inv}(\iota, p) &\eqdef \Lam W. \{\, (n, r) \mid \iota\in\dom(W) \land W(\iota) \nequiv{n+1}_{\textdom{PreProp}} \wIso(p) \,\} -\end{align*} -\begin{lem} - $\mathit{inv}$ is well-defined: $\mathit{inv}(\iota, p)$ is a valid proposition (this amounts to showing non-expansiveness), and $\mathit{inv}$ itself is a non-expansive map. -\end{lem} - -\typedsection{World satisfaction}{\wsat{-}{-}{-}{-} : - \textdom{State} \times - \pset{\mathbb{N}} \times - \textdom{Res} \times - \textdom{World} \to \psetdown{\mathbb{N}} \in {\cal U}} -\ralf{Make this Dave-compatible: Explicitly compose all the things in $s$} -\begin{align*} - \wsat{\state}{\mask}{\rs}{W} &= - \begin{aligned}[t] - \{\, n + 1 \in \mathbb{N} \mid &\Exists \rsB:\mathbb{N} \fpfn \textdom{Res}. (\rs \rtimes \rsB).\pres = \state \land{}\\ - &\quad \All \iota \in \dom(W). \iota \in \dom(W) \leftrightarrow \iota \in \dom(\rsB) \land {}\\ - &\quad\quad \iota \in \mask \ra (n, \rsB(\iota)) \in \wIso^{-1}(W(\iota))(W) \,\} \cup \{ 0 \} - \end{aligned} -\end{align*} -\begin{lem}\label{lem:fullsat-nonexpansive} - $\wsat{-}{-}{-}{-}$ is well-defined: It maps into $\psetdown{\mathbb{N}}$. (There is no need for it to be a non-expansive map, it doesn't itself live in $\cal U$.) -\end{lem} - -\begin{lem}\label{lem:fullsat-weaken-mask} - \begin{align*} - \MoveEqLeft - \All \state \in \Delta(\textdom{State}). - \All \mask_1, \mask_2 \in \Delta(\pset{\mathbb{N}}). - \All \rs, \rsB \in \Delta(\textdom{Res}). - \All W \in \textdom{World}. \\& - \mask_1 \subseteq \mask_2 \implies (\wsat{\state}{\mask_2}{\rs}{W}) \subseteq (\wsat{\state}{\mask_1}{\rs}{W}) - \end{align*} -\end{lem} - -\begin{lem}\label{lem:nequal_ext_world} - \begin{align*} - & - \All n \in \mathbb{N}. - \All W_1, W_1', W_2 \in \textdom{World}. - W_1 \nequiv{n} W_2 \land W_1 \leq W_1' \implies \Exists W_2' \in \textdom{World}. W_1' \nequiv{n} W_2' \land W_2 \leq W_2' - \end{align*} -\end{lem} - -\typedsection{Timeless}{\textit{timeless} : \textdom{Prop} \to \textdom{Prop}} +\typedsection{Interpretation of base assertions}{\Sem{\vctx \proves \term : \Prop} : \Sem{\vctx} \to \UPred(\monoid)} +Remember that $\UPred(\monoid)$ is isomorphic to $\monoid \monra \SProp$. +We are thus going to define the assertions as mapping CMRA elements to sets of step-indices. -\begin{align*} - \textit{timeless}(p) \eqdef - \begin{aligned}[t] - \Lam W. - \{\, (n, r) &\mid \All W' \geq W. \All k \leq n. \All r' \in \textdom{Res}. \\ - &\qquad - k > 0 \land (k - 1, r') \in p(W') \implies (k, r') \in p(W') \,\} - \end{aligned} -\end{align*} +We introduce an additional logical connective $\ownM\melt$, which will later be used to encode all of $\knowInv\iname\prop$, $\ownGGhost\melt$ and $\ownPhys\state$. -\begin{lem} - \textit{timeless} is well-defined: \textit{timeless}(p) is a valid proposition, and \textit{timeless} itself is a non-expansive map. -\end{lem} - -% PDS: \Ra undefined. -%\begin{lem} -%\begin{align*} -%& -% \All p \in \textdom{Prop}. -% \All \mask \in \pset{\mathbb{N}}. -%valid(\textit{timeless}(p) \Ra (\later p \vs[\mask][\mask] p)) -%\end{align*} -%\end{lem} - -\typedsection{View-shift}{\mathit{vs} : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \textdom{Prop} \to \textdom{Prop} \in {\cal U}} \begin{align*} - \mathit{vs}_{\mask_1}^{\mask_2}(q) &= \Lam W. - \begin{aligned}[t] - \{\, (n, \rs) &\mid \All W_F \geq W. \All \rs_F, \mask_F, \state. \All k \leq n.\\ - &\qquad - k \in (\wsat{\state}{\mask_1 \cup \mask_F}{\rs \rtimes \rs_F}{W_F}) \land k > 0 \land \mask_F \sep (\mask_1 \cup \mask_2) \implies{} \\ - &\qquad - \Exists W' \geq W_F. \Exists \rs'. k \in (\wsat{\state}{\mask_2 \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k, \rs') \in q(W') - \,\} - \end{aligned} + \Sem{\vctx \proves t =_\type u : \Prop}_\gamma &\eqdef + \Lam \any. \setComp{n}{\Sem{\vctx \proves t : \type}_\gamma \nequiv{n} \Sem{\vctx \proves u : \type}_\gamma} \\ + \Sem{\vctx \proves \FALSE : \Prop}_\gamma &\eqdef \Lam \any. \emptyset \\ + \Sem{\vctx \proves \TRUE : \Prop}_\gamma &\eqdef \Lam \any. \mathbb{N} \\ + \Sem{\vctx \proves \prop \land \propB : \Prop}_\gamma &\eqdef + \Lam \melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \cap \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt) \\ + \Sem{\vctx \proves \prop \lor \propB : \Prop}_\gamma &\eqdef + \Lam \melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \cup \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt) \\ + \Sem{\vctx \proves \prop \Ra \propB : \Prop}_\gamma &\eqdef + \Lam \melt. \setComp{n}{\begin{aligned} + \All m, \meltB.& m \leq n \land \melt \mincl \meltB \land \meltB \in \mval_m \Ra {} \\ + & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt)\end{aligned}}\\ + \Sem{\vctx \proves \All x : \type. \prop : \Prop}_\gamma &\eqdef + \Lam \melt. \setComp{n}{ \All v \in \Sem{\type}. n \in \Sem{\vctx, x : \type \proves \prop : \Prop}_{\gamma[x \mapsto v]}(\melt) } \\ + \Sem{\vctx \proves \Exists x : \type. \prop : \Prop}_\gamma &\eqdef + \Lam \melt. \setComp{n}{ \Exists v \in \Sem{\type}. n \in \Sem{\vctx, x : \type \proves \prop : \Prop}_{\gamma[x \mapsto v]}(\melt) } \\ + ~\\ + \Sem{\vctx \proves \always{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\mcore\melt) \\ + \Sem{\vctx \proves \later{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{n = 0 \lor n-1 \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt)}\\ + \Sem{\vctx \proves \prop * \propB : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{\begin{aligned}\Exists \meltB_1, \meltB_2. &\melt \nequiv{n} \meltB_1 \mtimes \meltB_2 \land {}\\& n \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB_1) \land n \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\meltB_2)\end{aligned}} +\\ + \Sem{\vctx \proves \prop \wand \propB : \Prop}_\gamma &\eqdef + \Lam \melt. \setComp{n}{\begin{aligned} + \All m, \meltB.& m \leq n \land \melt\mtimes\meltB \in \mval_m \Ra {} \\ + & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt\mtimes\meltB)\end{aligned}} \\ + \Sem{\vctx \proves \ownM{\melt} : \Prop}_\gamma &\eqdef \Lam\meltB. \setComp{n}{\melt \mincl[n] \meltB} \\ + \Sem{\vctx \proves \mval(\melt) : \Prop}_\gamma &\eqdef \Lam\any. \setComp{n}{\melt \in \mval_n} \\ \end{align*} -\begin{lem} - $\mathit{vs}$ is well-defined: $\mathit{vs}_{\mask_1}^{\mask_2}(q)$ is a valid proposition, and $\mathit{vs}$ is a non-expansive map. -\end{lem} - - -%\begin{lem}\label{lem:prim_view_shift_trans} -%\begin{align*} -%\MoveEqLeft -% \All \mask_1, \mask_2, \mask_3 \in \Delta(\pset{\mathbb{N}}). -% \All p, q \in \textdom{Prop}. \All W \in \textdom{World}. -% \All n \in \mathbb{N}.\\ -%& -% \mask_2 \subseteq \mask_1 \cup \mask_3 \land -% \bigl(\All W' \geq W. \All r \in \textdom{Res}. \All k \leq n. (k, r) \in p(W') \implies (k, r) \in vs_{\mask_2}^{\mask_3}(q)(W')\bigr) \\ -%&\qquad -% {}\implies \All r \in \textdom{Res}. (n, r) \in vs_{\mask_1}^{\mask_2}(p)(W) \implies (n, r) \in vs_{\mask_1}^{\mask_3}(q)(W) -%\end{align*} -%\end{lem} - -% PDS: E_1 ==>> E_2 undefined. -%\begin{lem} -%\begin{align*} -%& -% \forall \mask_1, \mask_2, \mask_3 \in \Delta(\pset{\mathbb{N}}).~ -% \forall p_1, p_2, p_3 \in \textdom{Prop}.~\\ -%&\qquad -% \mask_2 \subseteq \mask_1 \cup \mask_3 \Rightarrow -% valid(((p_1 \vs[\mask_1][\mask_2] p_2) \land (p_2 \vs[\mask_2][\mask_3] p_3)) \Rightarrow (p_1 \vs[\mask_1][\mask_3] p_3)) -%\end{align*} -%\end{lem} - -%\begin{lem} -%\begin{align*} -%\MoveEqLeft -% \All \iota \in \mathbb{N}. -% \All p \in \textdom{Prop}. -% \All W \in \textdom{World}. -% \All \rs \in \textdom{Res}. -% \All n \in \mathbb{N}. \\ -%& -% (n, \rs) \in inv(\iota, p)(W) \implies (n, \rs) \in vs_{\{ \iota \}}^{\emptyset}(\later p)(W) -%\end{align*} -%\end{lem} - -% PDS: * undefined. -%\begin{lem} -%\begin{align*} -%& -% \forall \iota \in \mathbb{N}.~ -% \forall p \in \textdom{Prop}.~ -% \forall W \in \textdom{World}.~ -% \forall \rs \in \textdom{Res}.~ -% \forall n \in \mathbb{N}.~\\ -%&\qquad -% (n, \rs) \in (inv(\iota, p) * \later p)(W) \Rightarrow (n, \rs) \in vs^{\{ \iota \}}_{\emptyset}(\top)(W) -%\end{align*} -%\end{lem} + +%\subsection{Iris model} + +% \subsection{Semantic structures: propositions} +% \ralf{This needs to be synced with the Coq development again.} + +% \[ +% \begin{array}[t]{rcl} +% % \protStatus &::=& \enabled \ALT \disabled \\[0.4em] +% \textdom{Res} &\eqdef& +% \{\, \rs = (\pres, \ghostRes) \mid +% \pres \in \textdom{State} \uplus \{\munit\} \land \ghostRes \in \mcarp{\monoid} \,\} \\[0.5em] +% (\pres, \ghostRes) \rtimes +% (\pres', \ghostRes') &\eqdef& +% \begin{cases} +% (\pres, \ghostRes \mtimes \ghostRes') & \mbox{if $\pres' = \munit$ and $\ghostRes \mtimes \ghostRes' \neq \mzero$} \\ +% (\pres', \ghostRes \mtimes \ghostRes') & \mbox{if $\pres = \munit$ and $\ghostRes \mtimes \ghostRes' \neq \mzero$} +% \end{cases} +% \\[0.5em] +% % +% \rs \leq \rs' & \eqdef & +% \Exists \rs''. \rs' = \rs \rtimes \rs''\\[1em] +% % +% \UPred(\textdom{Res}) &\eqdef& +% \{\, p \subseteq \mathbb{N} \times \textdom{Res} \mid +% \All (k,\rs) \in p. +% \All j\leq k. +% \All \rs' \geq \rs. +% (j,\rs')\in p \,\}\\[0.5em] +% \restr{p}{k} &\eqdef& +% \{\, (j, \rs) \in p \mid j < k \,\}\\[0.5em] +% p \nequiv{n} q & \eqdef & \restr{p}{n} = \restr{q}{n}\\[1em] +% % +% \textdom{PreProp} & \cong & +% \latert\big( \textdom{World} \monra \UPred(\textdom{Res}) +% \big)\\[0.5em] +% % +% \textdom{World} & \eqdef & +% \mathbb{N} \fpfn \textdom{PreProp}\\[0.5em] +% % +% w \nequiv{n} w' & \eqdef & +% n = 0 \lor +% \bigl(\dom(w) = \dom(w') \land \All i\in\dom(w). w(i) \nequiv{n} w'(i)\bigr) +% \\[0.5em] +% % +% w \leq w' & \eqdef & +% \dom(w) \subseteq \dom(w') \land \All i \in \dom(w). w(i) = w'(i) +% \\[0.5em] +% % +% \textdom{Prop} & \eqdef & \textdom{World} \monra \UPred(\textdom{Res}) +% \end{array} +% \] + +% For $p,q\in\UPred(\textdom{Res})$ with $p \nequiv{n} q$ defined +% as above, $\UPred(\textdom{Res})$ is a +% c.o.f.e. + +% $\textdom{Prop}$ is a c.o.f.e., which exists by America and Rutten's theorem~\cite{America-Rutten:JCSS89}. +% We do not need to consider how the object is constructed. +% We only need the isomorphism, given by maps +% \begin{align*} +% \wIso &: \latert \bigl(World \monra \UPred(\textdom{Res})\bigr) \to \textdom{PreProp} \\ +% \wIso^{-1} &: \textdom{PreProp} \to \latert \bigl(World \monra \UPred(\textdom{Res})\bigr) +% \end{align*} +% which are inverses to each other. +% Note: this is an isomorphism in $\cal U$, i.e., $\wIso$ and +% $\wIso^{-1}$ are both non-expansive. + +% $\textdom{World}$ is a c.o.f.e.\ with the family of equivalence +% relations defined as shown above. + +% \subsection{Semantic structures: types and environments} + +% For a set $X$, write $\Delta X$ for the discrete c.o.f.e.\ with $x \nequiv{n} +% x'$ iff $n = 0$ or $x = x'$ +% \[ +% \begin{array}[t]{@{}l@{\ }c@{\ }l@{}} +% \Sem{\textsort{Unit}} &\eqdef& \Delta \{ \star \} \\ +% \Sem{\textsort{InvName}} &\eqdef& \Delta \mathbb{N} \\ +% \Sem{\textsort{InvMask}} &\eqdef& \Delta \pset{\mathbb{N}} \\ +% \Sem{\textsort{Monoid}} &\eqdef& \Delta |\monoid| +% \end{array} +% \qquad\qquad +% \begin{array}[t]{@{}l@{\ }c@{\ }l@{}} +% \Sem{\textsort{Val}} &\eqdef& \Delta \textdom{Val} \\ +% \Sem{\textsort{Exp}} &\eqdef& \Delta \textdom{Exp} \\ +% \Sem{\textsort{Ectx}} &\eqdef& \Delta \textdom{Ectx} \\ +% \Sem{\textsort{State}} &\eqdef& \Delta \textdom{State} \\ +% \end{array} +% \qquad\qquad +% \begin{array}[t]{@{}l@{\ }c@{\ }l@{}} +% \Sem{\sort \times \sort'} &\eqdef& \Sem{\sort} \times \Sem{\sort} \\ +% \Sem{\sort \to \sort'} &\eqdef& \Sem{\sort} \to \Sem{\sort} \\ +% \Sem{\Prop} &\eqdef& \textdom{Prop} \\ +% \end{array} +% \] + +% The balance of our signature $\Sig$ is interpreted as follows. +% For each base type $\type$ not covered by the preceding table, we pick an object $X_\type$ in $\cal U$ and define +% \[ +% \Sem{\type} \eqdef X_\type +% \] +% For each function symbol $\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn$, we pick an arrow $\Sem{\sigfn} : \Sem{\type_1} \times \dots \times \Sem{\type_n} \to \Sem{\type_{n+1}}$ in $\cal U$. + +% An environment $\vctx$ is interpreted as the set of +% maps $\rho$, with $\dom(\rho) = \dom(\vctx)$ and +% $\rho(x)\in\Sem{\vctx(x)}$, +% and +% $\rho\nequiv{n} \rho' \iff n=0 \lor \bigl(\dom(\rho)=\dom(\rho') \land +% \All x\in\dom(\rho). \rho(x) \nequiv{n} \rho'(x)\bigr)$. + +% \ralf{Re-check all the following definitions with the Coq development.} +% %\typedsection{Validity}{valid : \pset{\textdom{Prop}} \in Sets} +% % +% %\begin{align*} +% %valid(p) &\iff \All n \in \mathbb{N}. \All \rs \in \textdom{Res}. \All W \in \textdom{World}. (n, \rs) \in p(W) +% %\end{align*} + +% \typedsection{Later modality}{\later : \textdom{Prop} \to \textdom{Prop} \in {\cal U}} + +% \begin{align*} +% \later p &\eqdef \Lam W. \{\, (n + 1, r) \mid (n, r) \in p(W) \,\} \cup \{\, (0, r) \mid r \in \textdom{Res} \,\} +% \end{align*} % \begin{lem} +% $\later{}$ is well-defined: $\later {p}$ is a valid proposition (this amounts to showing non-expansiveness), and $\later{}$ itself is a \emph{contractive} map. +% \end{lem} + +% \typedsection{Always modality}{\always{} : \textdom{Prop} \to \textdom{Prop} \in {\cal U}} + % \begin{align*} -% & -% \forall \mask_1, \mask_2 \in \Delta(\pset{\mathbb{N}}).~ -% valid(\bot \vs[\mask_1][\mask_2] \bot) +% \always{p} \eqdef \Lam W. \{\, (n, r) \mid (n, \munit) \in p(W) \,\} % \end{align*} +% \begin{lem} +% $\always{}$ is well-defined: $\always{p}$ is a valid proposition (this amounts to showing non-expansiveness), and $\always{}$ itself is a non-expansive map. % \end{lem} -% PDS: E_1 ==>> E_2 undefined. -%\begin{lem} -%\begin{align*} -%& -% \forall p, q \in \textdom{Prop}.~ -% \forall \mask \in \pset{\mathbb{N}}.~ -%valid(\always{(p \Rightarrow q)} \Rightarrow (p \vs[\mask][\mask] q)) -%\end{align*} -%\end{lem} - -% PDS: E # E' and E_1 ==>> E_2 undefined. -%\begin{lem} -%\begin{align*} -%& -% \forall p_1, p_2, p_3 \in \textdom{Prop}.~ -% \forall \mask_1, \mask_2, \mask \in \pset{\mathbb{N}}.~ -%valid(\mask \sep \mask_1 \Ra \mask \sep \mask_2 \Ra (p_1 \vs[\mask_1][\mask_2] p_2) \Rightarrow (p_1 * p_3 \vs[\mask_1 \cup \mask][\mask_2 \cup \mask] p_2 * p_3)) -%\end{align*} -%\end{lem} - -\typedsection{Weakest precondition}{\mathit{wp} : \Delta(\pset{\mathbb{N}}) \times \Delta(\textdom{Exp}) \times (\Delta(\textdom{Val}) \to \textdom{Prop}) \to \textdom{Prop} \in {\cal U}} +% % PDS: p \Rightarrow q not defined. +% %\begin{lem}\label{lem:always-impl-valid} +% %\begin{align*} +% %&\forall p, q \in \textdom{Prop}.~\\ +% %&\qquad +% % (\forall n \in \mathbb{N}.~\forall \rs \in \textdom{Res}.~\forall W \in \textdom{World}.~(n, \rs) \in p(W) \Rightarrow (n, \rs) \in q(W)) \Leftrightarrow~valid(\always{(p \Rightarrow q)}) +% %\end{align*} +% %\end{lem} + +% \typedsection{Invariant definition}{inv : \Delta(\mathbb{N}) \times \textdom{Prop} \to \textdom{Prop} \in {\cal U}} +% \begin{align*} +% \mathit{inv}(\iota, p) &\eqdef \Lam W. \{\, (n, r) \mid \iota\in\dom(W) \land W(\iota) \nequiv{n+1}_{\textdom{PreProp}} \wIso(p) \,\} +% \end{align*} +% \begin{lem} +% $\mathit{inv}$ is well-defined: $\mathit{inv}(\iota, p)$ is a valid proposition (this amounts to showing non-expansiveness), and $\mathit{inv}$ itself is a non-expansive map. +% \end{lem} +% \typedsection{World satisfaction}{\wsat{-}{-}{-}{-} : +% \textdom{State} \times +% \pset{\mathbb{N}} \times +% \textdom{Res} \times +% \textdom{World} \to \psetdown{\mathbb{N}} \in {\cal U}} +% \ralf{Make this Dave-compatible: Explicitly compose all the things in $s$} % \begin{align*} -% \mathit{wp}_\mask(\expr, q) &\eqdef \Lam W. +% \wsat{\state}{\mask}{\rs}{W} &= % \begin{aligned}[t] -% \{\, (n, \rs) &\mid \All W_F \geq W; k \leq n; \rs_F; \state; \mask_F \sep \mask. k > 0 \land k \in (\wsat{\state}{\mask \cup \mask_F}{\rs \rtimes \rs_F}{W_F}) \implies{}\\ -% &\qquad -% (\expr \in \textdom{Val} \implies \Exists W' \geq W_F. \Exists \rs'. \\ -% &\qquad\qquad -% k \in (\wsat{\state}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k, \rs') \in q(\expr)(W'))~\land \\ +% \{\, n + 1 \in \mathbb{N} \mid &\Exists \rsB:\mathbb{N} \fpfn \textdom{Res}. (\rs \rtimes \rsB).\pres = \state \land{}\\ +% &\quad \All \iota \in \dom(W). \iota \in \dom(W) \leftrightarrow \iota \in \dom(\rsB) \land {}\\ +% &\quad\quad \iota \in \mask \ra (n, \rsB(\iota)) \in \wIso^{-1}(W(\iota))(W) \,\} \cup \{ 0 \} +% \end{aligned} +% \end{align*} +% \begin{lem}\label{lem:fullsat-nonexpansive} +% $\wsat{-}{-}{-}{-}$ is well-defined: It maps into $\psetdown{\mathbb{N}}$. (There is no need for it to be a non-expansive map, it doesn't itself live in $\cal U$.) +% \end{lem} + +% \begin{lem}\label{lem:fullsat-weaken-mask} +% \begin{align*} +% \MoveEqLeft +% \All \state \in \Delta(\textdom{State}). +% \All \mask_1, \mask_2 \in \Delta(\pset{\mathbb{N}}). +% \All \rs, \rsB \in \Delta(\textdom{Res}). +% \All W \in \textdom{World}. \\& +% \mask_1 \subseteq \mask_2 \implies (\wsat{\state}{\mask_2}{\rs}{W}) \subseteq (\wsat{\state}{\mask_1}{\rs}{W}) +% \end{align*} +% \end{lem} + +% \begin{lem}\label{lem:nequal_ext_world} +% \begin{align*} +% & +% \All n \in \mathbb{N}. +% \All W_1, W_1', W_2 \in \textdom{World}. +% W_1 \nequiv{n} W_2 \land W_1 \leq W_1' \implies \Exists W_2' \in \textdom{World}. W_1' \nequiv{n} W_2' \land W_2 \leq W_2' +% \end{align*} +% \end{lem} + +% \typedsection{Timeless}{\textit{timeless} : \textdom{Prop} \to \textdom{Prop}} + +% \begin{align*} +% \textit{timeless}(p) \eqdef +% \begin{aligned}[t] +% \Lam W. +% \{\, (n, r) &\mid \All W' \geq W. \All k \leq n. \All r' \in \textdom{Res}. \\ % &\qquad -% (\All\ectx,\expr_0,\expr'_0,\state'. \expr = \ectx[\expr_0] \land \cfg{\state}{\expr_0} \step \cfg{\state'}{\expr'_0} \implies \Exists W' \geq W_F. \Exists \rs'. \\ -% &\qquad\qquad -% k - 1 \in (\wsat{\state'}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k-1, \rs') \in wp_\mask(\ectx[\expr_0'], q)(W'))~\land \\ +% k > 0 \land (k - 1, r') \in p(W') \implies (k, r') \in p(W') \,\} +% \end{aligned} +% \end{align*} + +% \begin{lem} +% \textit{timeless} is well-defined: \textit{timeless}(p) is a valid proposition, and \textit{timeless} itself is a non-expansive map. +% \end{lem} + +% % PDS: \Ra undefined. +% %\begin{lem} +% %\begin{align*} +% %& +% % \All p \in \textdom{Prop}. +% % \All \mask \in \pset{\mathbb{N}}. +% %valid(\textit{timeless}(p) \Ra (\later p \vs[\mask][\mask] p)) +% %\end{align*} +% %\end{lem} + +% \typedsection{View-shift}{\mathit{vs} : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \textdom{Prop} \to \textdom{Prop} \in {\cal U}} +% \begin{align*} +% \mathit{vs}_{\mask_1}^{\mask_2}(q) &= \Lam W. +% \begin{aligned}[t] +% \{\, (n, \rs) &\mid \All W_F \geq W. \All \rs_F, \mask_F, \state. \All k \leq n.\\ +% &\qquad +% k \in (\wsat{\state}{\mask_1 \cup \mask_F}{\rs \rtimes \rs_F}{W_F}) \land k > 0 \land \mask_F \sep (\mask_1 \cup \mask_2) \implies{} \\ % &\qquad -% (\All\ectx,\expr'. \expr = \ectx[\fork{\expr'}] \implies \Exists W' \geq W_F. \Exists \rs', \rs_1', \rs_2'. \\ -% &\qquad\qquad -% k - 1 \in (\wsat{\state}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land \rs' = \rs_1' \rtimes \rs_2'~\land \\ -% &\qquad\qquad -% (k-1, \rs_1') \in \mathit{wp}_\mask(\ectx[\textsf{fRet}], q)(W') \land -% (k-1, \rs_2') \in \mathit{wp}_\top(\expr', \Lam\any. \top)(W')) +% \Exists W' \geq W_F. \Exists \rs'. k \in (\wsat{\state}{\mask_2 \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k, \rs') \in q(W') % \,\} % \end{aligned} % \end{align*} -\begin{lem} - $\mathit{wp}$ is well-defined: $\mathit{wp}_{\mask}(\expr, q)$ is a valid proposition, and $\mathit{wp}$ is a non-expansive map. Besides, the dependency on the recursive occurrence is contractive, so $\mathit{wp}$ has a fixed-point. -\end{lem} +% \begin{lem} +% $\mathit{vs}$ is well-defined: $\mathit{vs}_{\mask_1}^{\mask_2}(q)$ is a valid proposition, and $\mathit{vs}$ is a non-expansive map. +% \end{lem} -\begin{lem} - $\mathit{wp}$ on values and non-mask-changing $\mathit{vs}$ agree: - \[ \mathit{wp}_\mask(\val, q) = \mathit{vs}_{\mask}^{\mask}(q \: \val) \] -\end{lem} -\typedsection{Interpretation of terms}{\Sem{\vctx \proves \term : \sort} : \Sem{\vctx} \to \Sem{\sort} \in {\cal U}} +% %\begin{lem}\label{lem:prim_view_shift_trans} +% %\begin{align*} +% %\MoveEqLeft +% % \All \mask_1, \mask_2, \mask_3 \in \Delta(\pset{\mathbb{N}}). +% % \All p, q \in \textdom{Prop}. \All W \in \textdom{World}. +% % \All n \in \mathbb{N}.\\ +% %& +% % \mask_2 \subseteq \mask_1 \cup \mask_3 \land +% % \bigl(\All W' \geq W. \All r \in \textdom{Res}. \All k \leq n. (k, r) \in p(W') \implies (k, r) \in vs_{\mask_2}^{\mask_3}(q)(W')\bigr) \\ +% %&\qquad +% % {}\implies \All r \in \textdom{Res}. (n, r) \in vs_{\mask_1}^{\mask_2}(p)(W) \implies (n, r) \in vs_{\mask_1}^{\mask_3}(q)(W) +% %\end{align*} +% %\end{lem} + +% % PDS: E_1 ==>> E_2 undefined. +% %\begin{lem} +% %\begin{align*} +% %& +% % \forall \mask_1, \mask_2, \mask_3 \in \Delta(\pset{\mathbb{N}}).~ +% % \forall p_1, p_2, p_3 \in \textdom{Prop}.~\\ +% %&\qquad +% % \mask_2 \subseteq \mask_1 \cup \mask_3 \Rightarrow +% % valid(((p_1 \vs[\mask_1][\mask_2] p_2) \land (p_2 \vs[\mask_2][\mask_3] p_3)) \Rightarrow (p_1 \vs[\mask_1][\mask_3] p_3)) +% %\end{align*} +% %\end{lem} + +% %\begin{lem} +% %\begin{align*} +% %\MoveEqLeft +% % \All \iota \in \mathbb{N}. +% % \All p \in \textdom{Prop}. +% % \All W \in \textdom{World}. +% % \All \rs \in \textdom{Res}. +% % \All n \in \mathbb{N}. \\ +% %& +% % (n, \rs) \in inv(\iota, p)(W) \implies (n, \rs) \in vs_{\{ \iota \}}^{\emptyset}(\later p)(W) +% %\end{align*} +% %\end{lem} + +% % PDS: * undefined. +% %\begin{lem} +% %\begin{align*} +% %& +% % \forall \iota \in \mathbb{N}.~ +% % \forall p \in \textdom{Prop}.~ +% % \forall W \in \textdom{World}.~ +% % \forall \rs \in \textdom{Res}.~ +% % \forall n \in \mathbb{N}.~\\ +% %&\qquad +% % (n, \rs) \in (inv(\iota, p) * \later p)(W) \Rightarrow (n, \rs) \in vs^{\{ \iota \}}_{\emptyset}(\top)(W) +% %\end{align*} +% %\end{lem} + +% % \begin{lem} +% % \begin{align*} +% % & +% % \forall \mask_1, \mask_2 \in \Delta(\pset{\mathbb{N}}).~ +% % valid(\bot \vs[\mask_1][\mask_2] \bot) +% % \end{align*} +% % \end{lem} + +% % PDS: E_1 ==>> E_2 undefined. +% %\begin{lem} +% %\begin{align*} +% %& +% % \forall p, q \in \textdom{Prop}.~ +% % \forall \mask \in \pset{\mathbb{N}}.~ +% %valid(\always{(p \Rightarrow q)} \Rightarrow (p \vs[\mask][\mask] q)) +% %\end{align*} +% %\end{lem} + +% % PDS: E # E' and E_1 ==>> E_2 undefined. +% %\begin{lem} +% %\begin{align*} +% %& +% % \forall p_1, p_2, p_3 \in \textdom{Prop}.~ +% % \forall \mask_1, \mask_2, \mask \in \pset{\mathbb{N}}.~ +% %valid(\mask \sep \mask_1 \Ra \mask \sep \mask_2 \Ra (p_1 \vs[\mask_1][\mask_2] p_2) \Rightarrow (p_1 * p_3 \vs[\mask_1 \cup \mask][\mask_2 \cup \mask] p_2 * p_3)) +% %\end{align*} +% %\end{lem} + +% \typedsection{Weakest precondition}{\mathit{wp} : \Delta(\pset{\mathbb{N}}) \times \Delta(\textdom{Exp}) \times (\Delta(\textdom{Val}) \to \textdom{Prop}) \to \textdom{Prop} \in {\cal U}} + +% % \begin{align*} +% % \mathit{wp}_\mask(\expr, q) &\eqdef \Lam W. +% % \begin{aligned}[t] +% % \{\, (n, \rs) &\mid \All W_F \geq W; k \leq n; \rs_F; \state; \mask_F \sep \mask. k > 0 \land k \in (\wsat{\state}{\mask \cup \mask_F}{\rs \rtimes \rs_F}{W_F}) \implies{}\\ +% % &\qquad +% % (\expr \in \textdom{Val} \implies \Exists W' \geq W_F. \Exists \rs'. \\ +% % &\qquad\qquad +% % k \in (\wsat{\state}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k, \rs') \in q(\expr)(W'))~\land \\ +% % &\qquad +% % (\All\ectx,\expr_0,\expr'_0,\state'. \expr = \ectx[\expr_0] \land \cfg{\state}{\expr_0} \step \cfg{\state'}{\expr'_0} \implies \Exists W' \geq W_F. \Exists \rs'. \\ +% % &\qquad\qquad +% % k - 1 \in (\wsat{\state'}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k-1, \rs') \in wp_\mask(\ectx[\expr_0'], q)(W'))~\land \\ +% % &\qquad +% % (\All\ectx,\expr'. \expr = \ectx[\fork{\expr'}] \implies \Exists W' \geq W_F. \Exists \rs', \rs_1', \rs_2'. \\ +% % &\qquad\qquad +% % k - 1 \in (\wsat{\state}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land \rs' = \rs_1' \rtimes \rs_2'~\land \\ +% % &\qquad\qquad +% % (k-1, \rs_1') \in \mathit{wp}_\mask(\ectx[\textsf{fRet}], q)(W') \land +% % (k-1, \rs_2') \in \mathit{wp}_\top(\expr', \Lam\any. \top)(W')) +% % \,\} +% % \end{aligned} +% % \end{align*} +% \begin{lem} +% $\mathit{wp}$ is well-defined: $\mathit{wp}_{\mask}(\expr, q)$ is a valid proposition, and $\mathit{wp}$ is a non-expansive map. Besides, the dependency on the recursive occurrence is contractive, so $\mathit{wp}$ has a fixed-point. +% \end{lem} -%A term $\vctx \proves \term : \sort$ is interpreted as a non-expansive map from $\Sem{\vctx}$ to $\Sem{\sort}$. +% \begin{lem} +% $\mathit{wp}$ on values and non-mask-changing $\mathit{vs}$ agree: +% \[ \mathit{wp}_\mask(\val, q) = \mathit{vs}_{\mask}^{\mask}(q \: \val) \] +% \end{lem} -\begin{align*} - \Sem{\vctx \proves x : \sort}_\gamma &= \gamma(x) \\ - \Sem{\vctx \proves \sigfn(\term_1, \dots, \term_n) : \type_{n+1}}_\gamma &= \Sem{\sigfn}(\Sem{\vctx \proves \term_1 : \type_1}_\gamma, \dots, \Sem{\vctx \proves \term_n : \type_n}_\gamma) \ \WHEN \sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn \\ - \Sem{\vctx \proves \Lam x. \term : \sort \to \sort'}_\gamma &= - \Lam v : \Sem{\sort}. \Sem{\vctx, x : \sort \proves \term : \sort'}_{\gamma[x \mapsto v]} \\ - \Sem{\vctx \proves \term~\termB : \sort'}_\gamma &= - \Sem{\vctx \proves \term : \sort \to \sort'}_\gamma(\Sem{\vctx \proves \termB : \sort}_\gamma) \\ - \Sem{\vctx \proves \unitval : \unitsort}_\gamma &= \star \\ - \Sem{\vctx \proves (\term_1, \term_2) : \sort_1 \times \sort_2}_\gamma &= (\Sem{\vctx \proves \term_1 : \sort_1}_\gamma, \Sem{\vctx \proves \term_2 : \sort_2}_\gamma) \\ - \Sem{\vctx \proves \pi_i~\term : \sort_1}_\gamma &= \pi_i(\Sem{\vctx \proves \term : \sort_1 \times \sort_2}_\gamma) -\end{align*} -% -\begin{align*} - \Sem{\vctx \proves \mzero : \textsort{Monoid}}_\gamma &= \mzero \\ - \Sem{\vctx \proves \munit : \textsort{Monoid}}_\gamma &= \munit \\ - \Sem{\vctx \proves \melt \mtimes \meltB : \textsort{Monoid}}_\gamma &= - \Sem{\vctx \proves \melt : \textsort{Monoid}}_\gamma \mtimes \Sem{\vctx \proves \meltB : \textsort{Monoid}}_\gamma -\end{align*} -% -\begin{align*} - \Sem{\vctx \proves t =_\sort u : \Prop}_\gamma &= - \Lam W. \{\, (n, r) \mid \Sem{\vctx \proves t : \sort}_\gamma \nequiv{n+1} \Sem{\vctx \proves u : \sort}_\gamma \,\} \\ - \Sem{\vctx \proves \FALSE : \Prop}_\gamma &= \Lam W. \emptyset \\ - \Sem{\vctx \proves \TRUE : \Prop}_\gamma &= \Lam W. \mathbb{N} \times \textdom{Res} \\ - \Sem{\vctx \proves P \land Q : \Prop}_\gamma &= - \Lam W. \Sem{\vctx \proves P : \Prop}_\gamma(W) \cap \Sem{\vctx \proves Q : \Prop}_\gamma(W) \\ - \Sem{\vctx \proves P \lor Q : \Prop}_\gamma &= - \Lam W. \Sem{\vctx \proves P : \Prop}_\gamma(W) \cup \Sem{\vctx \proves Q : \Prop}_\gamma(W) \\ - \Sem{\vctx \proves P \Ra Q : \Prop}_\gamma &= - \Lam W. \begin{aligned}[t] - \{\, (n, r) &\mid \All n' \leq n. \All W' \geq W. \All r' \geq r. \\ - &\qquad - (n', r') \in \Sem{\vctx \proves P : \Prop}_\gamma(W')~ \\ - &\qquad - \implies (n', r') \in \Sem{\vctx \proves Q : \Prop}_\gamma(W') \,\} - \end{aligned} \\ - \Sem{\vctx \proves \All x : \sort. P : \Prop}_\gamma &= - \Lam W. \{\, (n, r) \mid \All v \in \Sem{\sort}. (n, r) \in \Sem{\vctx, x : \sort \proves P : \Prop}_{\gamma[x \mapsto v]}(W) \,\} \\ - \Sem{\vctx \proves \Exists x : \sort. P : \Prop}_\gamma &= - \Lam W. \{\, (n, r) \mid \Exists v \in \Sem{\sort}. (n, r) \in \Sem{\vctx, x : \sort \proves P : \Prop}_{\gamma[x \mapsto v]}(W) \,\} -\end{align*} -% -\begin{align*} - \Sem{\vctx \proves \always{\prop} : \Prop}_\gamma &= \always{\Sem{\vctx \proves \prop : \Prop}_\gamma} \\ - \Sem{\vctx \proves \later{\prop} : \Prop}_\gamma &= \later \Sem{\vctx \proves \prop : \Prop}_\gamma\\ - \Sem{\vctx \proves \MU x. \pred : \sort \to \Prop}_\gamma &= - \mathit{fix}(\Lam v : \Sem{\sort \to \Prop}. \Sem{\vctx, x : \sort \to \Prop \proves \pred : \sort \to \Prop}_{\gamma[x \mapsto v]}) \\ - \Sem{\vctx \proves \prop * \propB : \Prop}_\gamma &= - \begin{aligned}[t] - \Lam W. \{\, (n, r) &\mid \Exists r_1, r_2. r = r_1 \bullet r_2 \land{} \\ - &\qquad - (n, r_1) \in \Sem{\vctx \proves \prop : \Prop}_\gamma \land{} \\ - &\qquad - (n, r_2) \in \Sem{\vctx \proves \propB : \Prop}_\gamma \,\} - \end{aligned} \\ - \Sem{\vctx \proves \prop \wand \propB : \Prop}_\gamma &= - \begin{aligned}[t] - \Lam W. \{\, (n, r) &\mid \All n' \leq n. \All W' \geq W. \All r'. \\ - &\qquad - (n', r') \in \Sem{\vctx \proves \prop : \Prop}_\gamma(W') \land r \sep r' \\ - &\qquad - \implies (n', r \bullet r') \in \Sem{\vctx \proves \propB : \Prop}_\gamma(W') - \} - \end{aligned} \\ - \Sem{\vctx \proves \knowInv{\iname}{\prop} : \Prop}_\gamma &= - inv(\Sem{\vctx \proves \iname : \textsort{InvName}}_\gamma, \Sem{\vctx \proves \prop : \Prop}_\gamma) \\ - \Sem{\vctx \proves \ownGGhost{\melt} : \Prop}_\gamma &= - \Lam W. \{\, (n, \rs) \mid \rs.\ghostRes \geq \Sem{\vctx \proves \melt : \textsort{Monoid}}_\gamma \,\} \\ - \Sem{\vctx \proves \ownPhys{\state} : \Prop}_\gamma &= - \Lam W. \{\, (n, \rs) \mid \rs.\pres = \Sem{\vctx \proves \state : \textsort{State}}_\gamma \,\} -\end{align*} -% -\begin{align*} - \Sem{\vctx \proves \pvsA{\prop}{\mask_1}{\mask_2} : \Prop}_\gamma &= - \textdom{vs}^{\Sem{\vctx \proves \mask_2 : \textsort{InvMask}}_\gamma}_{\Sem{\vctx \proves \mask_1 : \textsort{InvMask}}_\gamma}(\Sem{\vctx \proves \prop : \Prop}_\gamma) \\ - \Sem{\vctx \proves \dynA{\expr}{\pred}{\mask} : \Prop}_\gamma &= - \textdom{wp}_{\Sem{\vctx \proves \mask : \textsort{InvMask}}_\gamma}(\Sem{\vctx \proves \expr : \textsort{Exp}}_\gamma, \Sem{\vctx \proves \pred : \textsort{Val} \to \Prop}_\gamma) \\ - \Sem{\vctx \proves \wtt{\timeless{\prop}}{\Prop}}_\gamma &= - \textdom{timeless}(\Sem{\vctx \proves \prop : \Prop}_\gamma) -\end{align*} +% \begin{align*} +% \Sem{\vctx \proves x : \sort}_\gamma &= \gamma(x) \\ +% \Sem{\vctx \proves \sigfn(\term_1, \dots, \term_n) : \type_{n+1}}_\gamma &= \Sem{\sigfn}(\Sem{\vctx \proves \term_1 : \type_1}_\gamma, \dots, \Sem{\vctx \proves \term_n : \type_n}_\gamma) \ \WHEN \sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn \\ +% \Sem{\vctx \proves \Lam x. \term : \sort \to \sort'}_\gamma &= +% \Lam v : \Sem{\sort}. \Sem{\vctx, x : \sort \proves \term : \sort'}_{\gamma[x \mapsto v]} \\ +% \Sem{\vctx \proves \term~\termB : \sort'}_\gamma &= +% \Sem{\vctx \proves \term : \sort \to \sort'}_\gamma(\Sem{\vctx \proves \termB : \sort}_\gamma) \\ +% \Sem{\vctx \proves \unitval : \unitsort}_\gamma &= \star \\ +% \Sem{\vctx \proves (\term_1, \term_2) : \sort_1 \times \sort_2}_\gamma &= (\Sem{\vctx \proves \term_1 : \sort_1}_\gamma, \Sem{\vctx \proves \term_2 : \sort_2}_\gamma) \\ +% \Sem{\vctx \proves \pi_i~\term : \sort_1}_\gamma &= \pi_i(\Sem{\vctx \proves \term : \sort_1 \times \sort_2}_\gamma) +% \end{align*} +% % +% \begin{align*} +% \Sem{\vctx \proves \mzero : \textsort{Monoid}}_\gamma &= \mzero \\ +% \Sem{\vctx \proves \munit : \textsort{Monoid}}_\gamma &= \munit \\ +% \Sem{\vctx \proves \melt \mtimes \meltB : \textsort{Monoid}}_\gamma &= +% \Sem{\vctx \proves \melt : \textsort{Monoid}}_\gamma \mtimes \Sem{\vctx \proves \meltB : \textsort{Monoid}}_\gamma +% \end{align*} +% % +% \Sem{\vctx \proves \MU x. \pred : \sort \to \Prop}_\gamma &\eqdef +% \mathit{fix}(\Lam v : \Sem{\sort \to \Prop}. \Sem{\vctx, x : \sort \to \Prop \proves \pred : \sort \to \Prop}_{\gamma[x \mapsto v]}) \\ + + + % \Sem{\vctx \proves \knowInv{\iname}{\prop} : \Prop}_\gamma &= + % inv(\Sem{\vctx \proves \iname : \textsort{InvName}}_\gamma, \Sem{\vctx \proves \prop : \Prop}_\gamma) \\ + % \Sem{\vctx \proves \ownGGhost{\melt} : \Prop}_\gamma &= + % \Lam W. \{\, (n, \rs) \mid \rs.\ghostRes \geq \Sem{\vctx \proves \melt : \textsort{Monoid}}_\gamma \,\} \\ + % \Sem{\vctx \proves \ownPhys{\state} : \Prop}_\gamma &= + % \Lam W. \{\, (n, \rs) \mid \rs.\pres = \Sem{\vctx \proves \state : \textsort{State}}_\gamma \,\} + + +% % +% \begin{align*} +% \Sem{\vctx \proves \pvsA{\prop}{\mask_1}{\mask_2} : \Prop}_\gamma &= +% \textdom{vs}^{\Sem{\vctx \proves \mask_2 : \textsort{InvMask}}_\gamma}_{\Sem{\vctx \proves \mask_1 : \textsort{InvMask}}_\gamma}(\Sem{\vctx \proves \prop : \Prop}_\gamma) \\ +% \Sem{\vctx \proves \dynA{\expr}{\pred}{\mask} : \Prop}_\gamma &= +% \textdom{wp}_{\Sem{\vctx \proves \mask : \textsort{InvMask}}_\gamma}(\Sem{\vctx \proves \expr : \textsort{Exp}}_\gamma, \Sem{\vctx \proves \pred : \textsort{Val} \to \Prop}_\gamma) \\ +% \Sem{\vctx \proves \wtt{\timeless{\prop}}{\Prop}}_\gamma &= +% \textdom{timeless}(\Sem{\vctx \proves \prop : \Prop}_\gamma) +% \end{align*} -\typedsection{Interpretation of entailment}{\Sem{\vctx \mid \pfctx \proves \prop} : 2 \in \mathit{Sets}} - -\[ -\Sem{\vctx \mid \pfctx \proves \propB} \eqdef -\begin{aligned}[t] -\MoveEqLeft -\forall n \in \mathbb{N}.\; -\forall W \in \textdom{World}.\; -\forall \rs \in \textdom{Res}.\; -\forall \gamma \in \Sem{\vctx},\; -\\& -\bigl(\All \propB \in \pfctx. (n, \rs) \in \Sem{\vctx \proves \propB : \Prop}_\gamma(W)\bigr) -\implies (n, \rs) \in \Sem{\vctx \proves \prop : \Prop}_\gamma(W) -\end{aligned} -\] +% \typedsection{Interpretation of entailment}{\Sem{\vctx \mid \pfctx \proves \prop} : 2 \in \mathit{Sets}} + +% \[ +% \Sem{\vctx \mid \pfctx \proves \propB} \eqdef +% \begin{aligned}[t] +% \MoveEqLeft +% \forall n \in \mathbb{N}.\; +% \forall W \in \textdom{World}.\; +% \forall \rs \in \textdom{Res}.\; +% \forall \gamma \in \Sem{\vctx},\; +% \\& +% \bigl(\All \propB \in \pfctx. (n, \rs) \in \Sem{\vctx \proves \propB : \Prop}_\gamma(W)\bigr) +% \implies (n, \rs) \in \Sem{\vctx \proves \prop : \Prop}_\gamma(W) +% \end{aligned} +% \] %%% Local Variables: %%% mode: latex -- GitLab