diff --git a/program_logic/counter_examples.v b/program_logic/counter_examples.v
index 4a75e271825881f9d176648274efeaa8a6cb8e77..2f63579892dab575ade2aa2030ce049ce4dd7b78 100644
--- a/program_logic/counter_examples.v
+++ b/program_logic/counter_examples.v
@@ -3,7 +3,7 @@ From iris.proofmode Require Import tactics.
 
 (** This proves that we need the â–· in a "Saved Proposition" construction with
 name-dependend allocation. *)
-Section savedprop.
+Module savedprop. Section savedprop.
   Context (M : ucmraT).
   Notation iProp := (uPred M).
   Notation "¬ P" := (□ (P → False))%I : uPred_scope.
@@ -57,4 +57,194 @@ Section savedprop.
     apply (@uPred.adequacy M False 1); simpl.
     rewrite -uPred.later_intro. apply rvs_false.
   Qed.
-End savedprop.
+End savedprop. End savedprop.
+
+(** This proves that we need the â–· when opening invariants. *)
+(** We fork in [uPred M] for any M, but the proof would work in any BI. *)
+Module inv. Section inv.
+  Context (M : ucmraT).
+  Notation iProp := (uPred M).
+  Implicit Types P : iProp.
+
+  (** Assumptions *)
+  (* We have view shifts (two classes: empty/full mask) *)
+  Context (pvs0 pvs1 : iProp → iProp).
+
+  Hypothesis pvs0_intro : forall P, P ⊢ pvs0 P.
+
+  Hypothesis pvs0_mono : forall P Q, (P ⊢ Q) → pvs0 P ⊢ pvs0 Q.
+  Hypothesis pvs0_pvs0 : forall P, pvs0 (pvs0 P) ⊢ pvs0 P.
+  Hypothesis pvs0_frame_l : forall P Q, P ★ pvs0 Q ⊢ pvs0 (P ★ Q).
+
+  Hypothesis pvs1_mono : forall P Q, (P ⊢ Q) → pvs1 P ⊢ pvs1 Q.
+  Hypothesis pvs1_pvs1 : forall P, pvs1 (pvs1 P) ⊢ pvs1 P.
+  Hypothesis pvs1_frame_l : forall P Q, P ★ pvs1 Q ⊢ pvs1 (P ★ Q).
+
+  Hypothesis pvs0_pvs1 : forall P, pvs0 P ⊢ pvs1 P.
+
+  (* We have invariants *)
+  Context (name : Type) (inv : name → iProp → iProp).
+  Hypothesis inv_persistent : forall i P, PersistentP (inv i P).
+  Hypothesis inv_alloc :
+    forall (P : iProp), P ⊢ pvs1 (∃ i, inv i P).
+  Hypothesis inv_open :
+    forall i P Q R, (P ★ Q ⊢ pvs0 (P ★ R)) → (inv i P ★ Q ⊢ pvs1 R).
+
+  (* We have tokens for a little "two-state STS": [start] -> [finish].
+     state. [start] also asserts the exact state; it is only ever owned by the
+     invariant.  [finished] is duplicable. *)
+  Context (gname : Type).
+  Context (start finished : gname → iProp).
+
+  Hypothesis sts_alloc : True ⊢ pvs0 (∃ γ, start γ).
+  Hypotheses start_finish : forall γ, start γ ⊢ pvs0 (finished γ).
+
+  Hypothesis finished_not_start : forall γ, start γ ★ finished γ ⊢ False.
+
+  Hypothesis finished_dup : forall γ, finished γ ⊢ finished γ ★ finished γ.
+
+  (* We assume that we cannot view shift to false. *)
+  Hypothesis soundness : ¬ (True ⊢ pvs1 False).
+
+  (** Some general lemmas and proof mode compatibility. *)
+  Lemma inv_open' i P R:
+    inv i P ★ (P -★ pvs0 (P ★ pvs1 R)) ⊢ pvs1 R.
+  Proof.
+    iIntros "(#HiP & HP)". iApply pvs1_pvs1. iApply inv_open; last first.
+    { iSplit; first done. iExact "HP". }
+    iIntros "(HP & HPw)". by iApply "HPw".
+  Qed.
+
+  Lemma pvs1_intro P : P ⊢ pvs1 P.
+  Proof. rewrite -pvs0_pvs1. apply pvs0_intro. Qed.
+
+  Instance pvs0_mono' : Proper ((⊢) ==> (⊢)) pvs0.
+  Proof. intros ?**. by apply pvs0_mono. Qed.
+  Instance pvs0_proper : Proper ((⊣⊢) ==> (⊣⊢)) pvs0.
+  Proof.
+    intros P Q Heq.
+    apply (anti_symm (⊢)); apply pvs0_mono; by rewrite ?Heq -?Heq.
+  Qed.
+  Instance pvs1_mono' : Proper ((⊢) ==> (⊢)) pvs1.
+  Proof. intros ?**. by apply pvs1_mono. Qed.
+  Instance pvs1_proper : Proper ((⊣⊢) ==> (⊣⊢)) pvs1.
+  Proof.
+    intros P Q Heq.
+    apply (anti_symm (⊢)); apply pvs1_mono; by rewrite ?Heq -?Heq.
+  Qed.
+
+  Lemma pvs0_frame_r : forall P Q, (pvs0 P ★ Q) ⊢ pvs0 (P ★ Q).
+  Proof.
+    intros. rewrite comm pvs0_frame_l. apply pvs0_mono. by rewrite comm.
+  Qed.
+  Lemma pvs1_frame_r : forall P Q, (pvs1 P ★ Q) ⊢ pvs1 (P ★ Q).
+  Proof.
+    intros. rewrite comm pvs1_frame_l. apply pvs1_mono. by rewrite comm.
+  Qed.
+
+  Global Instance elim_pvs0_pvs0 P Q :
+    ElimVs (pvs0 P) P (pvs0 Q) (pvs0 Q).
+  Proof.
+    rewrite /ElimVs. etrans; last eapply pvs0_pvs0.
+    rewrite pvs0_frame_r. apply pvs0_mono. by rewrite uPred.wand_elim_r.
+  Qed.
+
+  Global Instance elim_pvs1_pvs1 P Q :
+    ElimVs (pvs1 P) P (pvs1 Q) (pvs1 Q).
+  Proof.
+    rewrite /ElimVs. etrans; last eapply pvs1_pvs1.
+    rewrite pvs1_frame_r. apply pvs1_mono. by rewrite uPred.wand_elim_r.
+  Qed.
+
+  Global Instance elim_pvs0_pvs1 P Q :
+    ElimVs (pvs0 P) P (pvs1 Q) (pvs1 Q).
+  Proof.
+    rewrite /ElimVs. rewrite pvs0_pvs1. apply elim_pvs1_pvs1.
+  Qed.
+
+  Global Instance exists_split_pvs0 {A} P (Φ : A → iProp) :
+    FromExist P Φ → FromExist (pvs0 P) (λ a, pvs0 (Φ a)).
+  Proof.
+    rewrite /FromExist=>HP. apply uPred.exist_elim=> a.
+    apply pvs0_mono. by rewrite -HP -(uPred.exist_intro a).
+  Qed.
+
+  Global Instance exists_split_pvs1 {A} P (Φ : A → iProp) :
+    FromExist P Φ → FromExist (pvs1 P) (λ a, pvs1 (Φ a)).
+  Proof.
+    rewrite /FromExist=>HP. apply uPred.exist_elim=> a.
+    apply pvs1_mono. by rewrite -HP -(uPred.exist_intro a).
+  Qed.
+
+  (** Now to the actual counterexample. We start with a weird for of saved propositions. *)
+  Definition saved (γ : gname) (P : iProp) : iProp :=
+    ∃ i, inv i (start γ ∨ (finished γ ★ □P)).
+  Global Instance : forall γ P, PersistentP (saved γ P) := _.
+
+  Lemma saved_alloc (P : gname → iProp) :
+    True ⊢ pvs1 (∃ γ, saved γ (P γ)).
+  Proof.
+    iIntros "". iVs (sts_alloc) as (γ) "Hs".
+    iVs (inv_alloc (start γ ∨ (finished γ ★ □ (P γ))) with "[Hs]") as (i) "#Hi".
+    { iLeft. done. }
+    iApply pvs1_intro. iExists γ, i. done.
+  Qed.
+
+  Lemma saved_cast γ P Q :
+    saved γ P ★ saved γ Q ★ □ P ⊢ pvs1 (□ Q).
+  Proof.
+    iIntros "(#HsP & #HsQ & #HP)". iDestruct "HsP" as (i) "HiP".
+    iApply (inv_open' i). iSplit; first done.
+    (* Can I state a view-shift and immediately run it? *)
+    iIntros "HaP". iAssert (pvs0 (finished γ)) with "[HaP]" as "Hf".
+    { iDestruct "HaP" as "[Hs | [Hf _]]".
+      - by iApply start_finish.
+      - by iApply pvs0_intro. }
+    iVs "Hf" as "Hf". iDestruct (finished_dup with "Hf") as "[Hf Hf']".
+    iApply pvs0_intro. iSplitL "Hf'"; first by eauto.
+    (* Step 2: Open the Q-invariant. *)
+    iClear "HiP". clear i. iDestruct "HsQ" as (i) "HiQ".
+    iApply (inv_open' i). iSplit; first done.
+    iIntros "[HaQ | [_ #HQ]]".
+    { iExFalso. iApply finished_not_start. iSplitL "HaQ"; done. }
+    iApply pvs0_intro. iSplitL "Hf".
+    { iRight. by iSplitL "Hf". }
+    by iApply pvs1_intro.
+  Qed.
+
+  (** And now we tie a bad knot. *)
+  Notation "¬ P" := (□ (P -★ pvs1 False))%I : uPred_scope.
+  Definition A i : iProp := ∃ P, ¬P ★ saved i P.
+  Global Instance : forall i, PersistentP (A i) := _.
+
+  Lemma A_alloc :
+    True ⊢ pvs1 (∃ i, saved i (A i)).
+  Proof. by apply saved_alloc. Qed.
+
+  Lemma alloc_NA i :
+    saved i (A i) ⊢ (¬A i).
+  Proof.
+    iIntros "#Hi !# #HA". iPoseProof "HA" as "HA'".
+    iDestruct "HA'" as (P) "#[HNP Hi']".
+    iVs ((saved_cast i) with "[]") as "HP".
+    { iSplit; first iExact "Hi". iSplit; first iExact "Hi'". done. }
+    by iApply "HNP".
+  Qed.
+
+  Lemma alloc_A i :
+    saved i (A i) ⊢ A i.
+  Proof.
+    iIntros "#Hi". iPoseProof (alloc_NA with "Hi") as "HNA".
+    iExists (A i). iSplit; done.
+  Qed.
+
+  Lemma contradiction : False.
+  Proof.
+    apply soundness. iIntros "".
+    iVs A_alloc as (i) "#H".
+    iPoseProof (alloc_NA with "H") as "HN".
+    iApply "HN".
+    iApply alloc_A. done.
+  Qed.
+
+End inv. End inv.