From b81aa3aaa4a4b1cf31a6f03eeb7809012b516240 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Thu, 9 May 2019 09:56:24 +0200 Subject: [PATCH] `RelDecision` instance for `flip`, and make `flip` tc opaque to avoid loops due to eager unification. --- theories/base.v | 7 ++++++- theories/decidable.v | 6 +++++- 2 files changed, 11 insertions(+), 2 deletions(-) diff --git a/theories/base.v b/theories/base.v index 86d98c17..4f9c20a6 100644 --- a/theories/base.v +++ b/theories/base.v @@ -505,7 +505,12 @@ Arguments id _ _ / : assert. Arguments compose _ _ _ _ _ _ / : assert. Arguments flip _ _ _ _ _ _ / : assert. Arguments const _ _ _ _ / : assert. -Typeclasses Transparent id compose flip const. +Typeclasses Transparent id compose const. + +(** Make sure that [flip] is type class opaque, otherwise one gets loops due to +instance involving [flip], e.g. [RelDecision R → RelDecision (flip R)] could be +used indefinitely. *) +Typeclasses Opaque flip. Definition fun_map {A A' B B'} (f: A' → A) (g: B → B') (h : A → B) : A' → B' := g ∘ h ∘ f. diff --git a/theories/decidable.v b/theories/decidable.v index c78d72a6..062dd1dc 100644 --- a/theories/decidable.v +++ b/theories/decidable.v @@ -135,7 +135,7 @@ Lemma dexists_proj1 `(P : A → Prop) `{∀ x, Decision (P x)} (x : dsig P) p : dexist (`x) p = x. Proof. apply dsig_eq; reflexivity. Qed. -(** * Instances of Decision *) +(** * Instances of [Decision] *) (** Instances of [Decision] for operators of propositional logic. *) Instance True_dec: Decision True := left I. Instance False_dec: Decision False := right (False_rect False). @@ -192,3 +192,7 @@ Proof. destruct (decide Q); tauto. Qed. Program Definition inj_eq_dec `{EqDecision A} {B} (f : B → A) `{!Inj (=) (=) f} : EqDecision B := λ x y, cast_if (decide (f x = f y)). Solve Obligations with firstorder congruence. + +(** * Instances of [RelDecision] *) +Instance flip_dec {A} (R : relation A) `{!RelDecision R} : + RelDecision (flip R) := λ x y, decide_rel R y x. -- GitLab