From 1a18f2ffa60e8a6a04842868b3b1bc8710325f1f Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Tue, 4 Oct 2016 17:31:13 +0200 Subject: [PATCH] docs: update model --- docs/base-logic.tex | 16 ++--- docs/model.tex | 153 ++++++++--------------------------------- docs/program-logic.tex | 85 +++++++++++++++++++++++ 3 files changed, 123 insertions(+), 131 deletions(-) diff --git a/docs/base-logic.tex b/docs/base-logic.tex index a63bb983e..938d8c916 100644 --- a/docs/base-logic.tex +++ b/docs/base-logic.tex @@ -60,7 +60,7 @@ Below, $\melt$ ranges over $\monoid$ and $i$ ranges over $\set{1,2}$. \Exists \var:\type. \prop \mid \All \var:\type. \prop \mid \\& - \ownGGhost{\term} \mid \mval(\term) \mid + \ownM{\term} \mid \mval(\term) \mid \always\prop \mid {\later\prop} \mid \upd \prop\mid @@ -167,7 +167,7 @@ In writing $\vctx, x:\type$, we presuppose that $x$ is not already declared in $ {\vctx \proves \wtt{\All x:\type. \prop}{\Prop}} \and \infer{\vctx \proves \wtt{\melt}{\textlog{M}}} - {\vctx \proves \wtt{\ownGGhost{\melt}}{\Prop}} + {\vctx \proves \wtt{\ownM{\melt}}{\Prop}} \and \infer{\vctx \proves \wtt{\melt}{\type} \and \text{$\type$ is a CMRA}} {\vctx \proves \wtt{\mval(\melt)}{\Prop}} @@ -345,10 +345,10 @@ Furthermore, we have the usual $\eta$ and $\beta$ laws for projections, $\lambda \paragraph{Laws for ghosts and validity.} \begin{mathpar} \begin{array}{rMcMl} -\ownGGhost{\melt} * \ownGGhost{\meltB} &\provesIff& \ownGGhost{\melt \mtimes \meltB} \\ -\ownGGhost\melt &\proves& \always{\ownGGhost{\mcore\melt}} \\ -\TRUE &\proves& \ownGGhost{\munit} \\ -\later\ownGGhost\melt &\proves& \Exists\meltB. \ownGGhost\meltB \land \later(\melt = \meltB) +\ownM{\melt} * \ownM{\meltB} &\provesIff& \ownM{\melt \mtimes \meltB} \\ +\ownM\melt &\proves& \always{\ownM{\mcore\melt}} \\ +\TRUE &\proves& \ownM{\munit} \\ +\later\ownM\melt &\proves& \Exists\meltB. \ownM\meltB \land \later(\melt = \meltB) \end{array} \and \infer[valid-intro] @@ -360,7 +360,7 @@ Furthermore, we have the usual $\eta$ and $\beta$ laws for projections, $\lambda {\mval(\melt) \proves \FALSE} \and \begin{array}{rMcMl} -\ownGGhost{\melt} &\proves& \mval(\melt) \\ +\ownM{\melt} &\proves& \mval(\melt) \\ \mval(\melt \mtimes \meltB) &\proves& \mval(\melt) \\ \mval(\melt) &\proves& \always\mval(\melt) \end{array} @@ -385,7 +385,7 @@ Furthermore, we have the usual $\eta$ and $\beta$ laws for projections, $\lambda \inferH{upd-update} {\melt \mupd \meltsB} -{\ownGGhost\melt \proves \upd \Exists\meltB\in\meltsB. \ownGGhost\meltB} +{\ownM\melt \proves \upd \Exists\meltB\in\meltsB. \ownM\meltB} \end{mathpar} \subsection{Soundness} diff --git a/docs/model.tex b/docs/model.tex index 9546c8d11..1064ea8f5 100644 --- a/docs/model.tex +++ b/docs/model.tex @@ -3,17 +3,32 @@ The semantics closely follows the ideas laid out in~\cite{catlogic}. -\subsection{Generic model of base logic} -\label{sec:upred-logic} +\paragraph{Semantic domains.} -The base logic including equality, later, always, and a notion of ownership is defined on $\UPred(\monoid)$ for any CMRA $\monoid$. +The semantic domains are interpreted as follows: +\[ +\begin{array}[t]{@{}l@{\ }c@{\ }l@{}} +\Sem{\textlog{\Prop}} &\eqdef& \UPred(\monoid) \\ +\Sem{\textlog{M}} &\eqdef& \monoid +\end{array} +\qquad\qquad +\begin{array}[t]{@{}l@{\ }c@{\ }l@{}} +\Sem{1} &\eqdef& \Delta \{ () \} \\ +\Sem{\type \times \type'} &\eqdef& \Sem{\type} \times \Sem{\type} \\ +\Sem{\type \to \type'} &\eqdef& \Sem{\type} \nfn \Sem{\type} \\ +\end{array} +\] +For the remaining base types $\type$ defined by the signature $\Sig$, we pick an object $X_\type$ in $\COFEs$ and define +\[ +\Sem{\type} \eqdef X_\type +\] +For each function symbol $\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn$, we pick a function $\Sem{\sigfn} : \Sem{\type_1} \times \dots \times \Sem{\type_n} \nfn \Sem{\type_{n+1}}$. + +\judgment[Interpretation of assertions.]{\Sem{\vctx \proves \term : \Prop} : \Sem{\vctx} \nfn \UPred(\monoid)} -\typedsection{Interpretation of base assertions}{\Sem{\vctx \proves \term : \Prop} : \Sem{\vctx} \nfn \UPred(\monoid)} Remember that $\UPred(\monoid)$ is isomorphic to $\monoid \monra \SProp$. We are thus going to define the assertions as mapping CMRA elements to sets of step-indices. -We introduce an additional logical connective $\ownM\melt$, which will later be used to encode all of $\knowInv\iname\prop$, $\ownGGhost\melt$ and $\ownPhys\state$. - \begin{align*} \Sem{\vctx \proves t =_\type u : \Prop}_\gamma &\eqdef \Lam \any. \setComp{n}{\Sem{\vctx \proves t : \type}_\gamma \nequiv{n} \Sem{\vctx \proves u : \type}_\gamma} \\ @@ -32,134 +47,27 @@ We introduce an additional logical connective $\ownM\melt$, which will later be \Sem{\vctx \proves \Exists x : \type. \prop : \Prop}_\gamma &\eqdef \Lam \melt. \setComp{n}{ \Exists v \in \Sem{\type}. n \in \Sem{\vctx, x : \type \proves \prop : \Prop}_{\gamma[x \mapsto v]}(\melt) } \\ ~\\ - \Sem{\vctx \proves \always{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\mcore\melt) \\ - \Sem{\vctx \proves \later{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{n = 0 \lor n-1 \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt)}\\ \Sem{\vctx \proves \prop * \propB : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{\begin{aligned}\Exists \meltB_1, \meltB_2. &\melt \nequiv{n} \meltB_1 \mtimes \meltB_2 \land {}\\& n \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB_1) \land n \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\meltB_2)\end{aligned}} \\ \Sem{\vctx \proves \prop \wand \propB : \Prop}_\gamma &\eqdef \Lam \melt. \setComp{n}{\begin{aligned} \All m, \meltB.& m \leq n \land \melt\mtimes\meltB \in \mval_m \Ra {} \\ & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt\mtimes\meltB)\end{aligned}} \\ - \Sem{\vctx \proves \ownM{\melt} : \Prop}_\gamma &\eqdef \Lam\meltB. \setComp{n}{\Sem{\vctx \proves \melt : \textlog{M}} \mincl[n] \meltB} \\ - \Sem{\vctx \proves \mval(\melt) : \Prop}_\gamma &\eqdef \Lam\any. \setComp{n}{\Sem{\vctx \proves \melt : \type} \in \mval_n} \\ + \Sem{\vctx \proves \always{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\mcore\melt) \\ + \Sem{\vctx \proves \later{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{n = 0 \lor n-1 \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt)}\\ + \Sem{\vctx \proves \ownM{\melt} : \Prop}_\gamma &\eqdef \Lam\meltB. \setComp{n}{\Sem{\vctx \proves \melt : \textlog{M}}_\gamma \mincl[n] \meltB} \\ + \Sem{\vctx \proves \mval(\melt) : \Prop}_\gamma &\eqdef \Lam\any. \setComp{n}{\Sem{\vctx \proves \melt : \type}_\gamma \in \mval_n} \\ + \Sem{\vctx \proves \upd\prop : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{\begin{aligned} + \All m, \melt'. & m \leq n \land (\melt \mtimes \melt') \in \mval_m \Ra {}\\& \Exists \meltB. (\meltB \mtimes \melt') \in \mval_k \land m \in \Sem{\vctx \proves \prop :\Prop}_\gamma(\melt') + \end{aligned} +} \end{align*} For every definition, we have to show all the side-conditions: The maps have to be non-expansive and monotone. -\subsection{Iris model} - -\paragraph{Semantic domain of assertions.} -The first complicated task in building a model of full Iris is defining the semantic model of $\Prop$. -We start by defining the functor that assembles the CMRAs we need to the global resource CMRA: -\begin{align*} - \textdom{ResF}(\cofe^\op, \cofe) \eqdef{}& \record{\wld: \mathbb{N} \fpfn \agm(\latert \cofe), \pres: \maybe{\exm(\textdom{State})}, \ghostRes: \iFunc(\cofe^\op, \cofe)} -\end{align*} -Above, $\maybe\monoid$ is the monoid obtained by adding a unit to $\monoid$. -(It's not a coincidence that we used the same notation for the range of the core; it's the same type either way: $\monoid + 1$.) -Remember that $\iFunc$ is the user-chosen bifunctor from $\COFEs$ to $\CMRAs$ (see~\Sref{sec:logic}). -$\textdom{ResF}(\cofe^\op, \cofe)$ is a CMRA by lifting the individual CMRAs pointwise. -Furthermore, since $\Sigma$ is locally contractive, so is $\textdom{ResF}$. - -Now we can write down the recursive domain equation: -\[ \iPreProp \cong \UPred(\textdom{ResF}(\iPreProp, \iPreProp)) \] -$\iPreProp$ is a COFE defined as the fixed-point of a locally contractive bifunctor. -This fixed-point exists and is unique by America and Rutten's theorem~\cite{America-Rutten:JCSS89,birkedal:metric-space}. -We do not need to consider how the object is constructed. -We only need the isomorphism, given by -\begin{align*} - \Res &\eqdef \textdom{ResF}(\iPreProp, \iPreProp) \\ - \iProp &\eqdef \UPred(\Res) \\ - \wIso &: \iProp \nfn \iPreProp \\ - \wIso^{-1} &: \iPreProp \nfn \iProp -\end{align*} - -We then pick $\iProp$ as the interpretation of $\Prop$: -\[ \Sem{\Prop} \eqdef \iProp \] - - -\paragraph{Interpretation of assertions.} -$\iProp$ is a $\UPred$, and hence the definitions from \Sref{sec:upred-logic} apply. -We only have to define the interpretation of the missing connectives, the most interesting bits being primitive view shifts and weakest preconditions. - -\typedsection{World satisfaction}{\wsat{-}{-}{-} : - \Delta\textdom{State} \times - \Delta\pset{\mathbb{N}} \times - \textdom{Res} \nfn \SProp } -\begin{align*} - \wsatpre(n, \mask, \state, \rss, \rs) & \eqdef \begin{inbox}[t] - \rs \in \mval_{n+1} \land \rs.\pres = \exinj(\sigma) \land - \dom(\rss) \subseteq \mask \cap \dom( \rs.\wld) \land {}\\ - \All\iname \in \mask, \prop \in \iProp. (\rs.\wld)(\iname) \nequiv{n+1} \aginj(\latertinj(\wIso(\prop))) \Ra n \in \prop(\rss(\iname)) - \end{inbox}\\ - \wsat{\state}{\mask}{\rs} &\eqdef \set{0}\cup\setComp{n+1}{\Exists \rss : \mathbb{N} \fpfn \textdom{Res}. \wsatpre(n, \mask, \state, \rss, \rs \mtimes \prod_\iname \rss(\iname))} -\end{align*} -\typedsection{Primitive view-shift}{\mathit{pvs}_{-}^{-}(-) : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \iProp \nfn \iProp} -\begin{align*} - \mathit{pvs}_{\mask_1}^{\mask_2}(\prop) &= \Lam \rs. \setComp{n}{\begin{aligned} - \All \rs_\f, k, \mask_\f, \state.& 0 < k \leq n \land (\mask_1 \cup \mask_2) \disj \mask_\f \land k \in \wsat\state{\mask_1 \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\& - \Exists \rsB. k \in \prop(\rsB) \land k \in \wsat\state{\mask_2 \cup \mask_\f}{\rsB \mtimes \rs_\f} - \end{aligned}} -\end{align*} - -\typedsection{Weakest precondition}{\mathit{wp}_{-}(-, -) : \Delta(\pset{\mathbb{N}}) \times \Delta(\textdom{Exp}) \times (\Delta(\textdom{Val}) \nfn \iProp) \nfn \iProp} - -$\textdom{wp}$ is defined as the fixed-point of a contractive function. -\begin{align*} - \textdom{pre-wp}(\textdom{wp})(\mask, \expr, \pred) &\eqdef \Lam\rs. \setComp{n}{\begin{aligned} - \All &\rs_\f, m, \mask_\f, \state. 0 \leq m < n \land \mask \disj \mask_\f \land m+1 \in \wsat\state{\mask \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\ - &(\All\val. \toval(\expr) = \val \Ra \Exists \rsB. m+1 \in \pred(\val)(\rsB) \land m+1 \in \wsat\state{\mask \cup \mask_\f}{\rsB \mtimes \rs_\f}) \land {}\\ - &(\toval(\expr) = \bot \land 0 < m \Ra \red(\expr, \state) \land \All \expr_2, \state_2, \expr_\f. \expr,\state \step \expr_2,\state_2,\expr_\f \Ra {}\\ - &\qquad \Exists \rsB_1, \rsB_2. m \in \wsat\state{\mask \cup \mask_\f}{\rsB_1 \mtimes \rsB_2 \mtimes \rs_\f} \land m \in \textdom{wp}(\mask, \expr_2, \pred)(\rsB_1) \land {}&\\ - &\qquad\qquad (\expr_\f = \bot \lor m \in \textdom{wp}(\top, \expr_\f, \Lam\any.\Lam\any.\mathbb{N})(\rsB_2)) - \end{aligned}} \\ - \textdom{wp}_\mask(\expr, \pred) &\eqdef \mathit{fix}(\textdom{pre-wp})(\mask, \expr, \pred) -\end{align*} - - -\typedsection{Interpretation of program logic assertions}{\Sem{\vctx \proves \term : \Prop} : \Sem{\vctx} \nfn \iProp} - -$\knowInv\iname\prop$, $\ownGGhost\melt$ and $\ownPhys\state$ are just syntactic sugar for forms of $\ownM{-}$. -\begin{align*} - \knowInv{\iname}{\prop} &\eqdef \ownM{[\iname \mapsto \aginj(\latertinj(\wIso(\prop)))], \munit, \munit} \\ - \ownGGhost{\melt} &\eqdef \ownM{\munit, \munit, \melt} \\ - \ownPhys{\state} &\eqdef \ownM{\munit, \exinj(\state), \munit} \\ -~\\ - \Sem{\vctx \proves \pvs[\mask_1][\mask_2] \prop : \Prop}_\gamma &\eqdef - \textdom{pvs}^{\Sem{\vctx \proves \mask_2 : \textlog{InvMask}}_\gamma}_{\Sem{\vctx \proves \mask_1 : \textlog{InvMask}}_\gamma}(\Sem{\vctx \proves \prop : \Prop}_\gamma) \\ - \Sem{\vctx \proves \wpre{\expr}[\mask]{\Ret\var.\prop} : \Prop}_\gamma &\eqdef - \textdom{wp}_{\Sem{\vctx \proves \mask : \textlog{InvMask}}_\gamma}(\Sem{\vctx \proves \expr : \textlog{Expr}}_\gamma, \Lam\val. \Sem{\vctx \proves \prop : \Prop}_{\gamma[\var\mapsto\val]}) -\end{align*} - -\paragraph{Remaining semantic domains, and interpretation of non-assertion terms.} - -The remaining domains are interpreted as follows: -\[ -\begin{array}[t]{@{}l@{\ }c@{\ }l@{}} -\Sem{\textlog{InvName}} &\eqdef& \Delta \mathbb{N} \\ -\Sem{\textlog{InvMask}} &\eqdef& \Delta \pset{\mathbb{N}} \\ -\Sem{\textlog{M}} &\eqdef& F(\iProp) -\end{array} -\qquad\qquad -\begin{array}[t]{@{}l@{\ }c@{\ }l@{}} -\Sem{\textlog{Val}} &\eqdef& \Delta \textdom{Val} \\ -\Sem{\textlog{Expr}} &\eqdef& \Delta \textdom{Expr} \\ -\Sem{\textlog{State}} &\eqdef& \Delta \textdom{State} \\ -\end{array} -\qquad\qquad -\begin{array}[t]{@{}l@{\ }c@{\ }l@{}} -\Sem{1} &\eqdef& \Delta \{ () \} \\ -\Sem{\type \times \type'} &\eqdef& \Sem{\type} \times \Sem{\type} \\ -\Sem{\type \to \type'} &\eqdef& \Sem{\type} \nfn \Sem{\type} \\ -\end{array} -\] -For the remaining base types $\type$ defined by the signature $\Sig$, we pick an object $X_\type$ in $\COFEs$ and define -\[ -\Sem{\type} \eqdef X_\type -\] -For each function symbol $\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn$, we pick a function $\Sem{\sigfn} : \Sem{\type_1} \times \dots \times \Sem{\type_n} \nfn \Sem{\type_{n+1}}$. -\typedsection{Interpretation of non-propositional terms}{\Sem{\vctx \proves \term : \type} : \Sem{\vctx} \nfn \Sem{\type}} +\judgment[Interpretation of non-propositional terms]{\Sem{\vctx \proves \term : \type} : \Sem{\vctx} \nfn \Sem{\type}} \begin{align*} \Sem{\vctx \proves x : \type}_\gamma &\eqdef \gamma(x) \\ \Sem{\vctx \proves \sigfn(\term_1, \dots, \term_n) : \type_{n+1}}_\gamma &\eqdef \Sem{\sigfn}(\Sem{\vctx \proves \term_1 : \type_1}_\gamma, \dots, \Sem{\vctx \proves \term_n : \type_n}_\gamma) \\ @@ -174,7 +82,6 @@ For each function symbol $\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \ \Sem{\vctx \proves (\term_1, \term_2) : \type_1 \times \type_2}_\gamma &\eqdef (\Sem{\vctx \proves \term_1 : \type_1}_\gamma, \Sem{\vctx \proves \term_2 : \type_2}_\gamma) \\ \Sem{\vctx \proves \pi_i(\term) : \type_i}_\gamma &\eqdef \pi_i(\Sem{\vctx \proves \term : \type_1 \times \type_2}_\gamma) \\ ~\\ - \Sem{\vctx \proves \munit : \textlog{M}}_\gamma &\eqdef \munit \\ \Sem{\vctx \proves \mcore\melt : \textlog{M}}_\gamma &\eqdef \mcore{\Sem{\vctx \proves \melt : \textlog{M}}_\gamma} \\ \Sem{\vctx \proves \melt \mtimes \meltB : \textlog{M}}_\gamma &\eqdef \Sem{\vctx \proves \melt : \textlog{M}}_\gamma \mtimes \Sem{\vctx \proves \meltB : \textlog{M}}_\gamma diff --git a/docs/program-logic.tex b/docs/program-logic.tex index 9ccbc2c66..ce1af0d58 100644 --- a/docs/program-logic.tex +++ b/docs/program-logic.tex @@ -240,6 +240,91 @@ Furthermore, the following adequacy statement shows that our weakest preconditio \end{align*} Notice that this is stronger than saying that the thread pool can reduce; we actually assert that \emph{every} non-finished thread can take a step. +\subsection{Iris model} + +\paragraph{Semantic domain of assertions.} +The first complicated task in building a model of full Iris is defining the semantic model of $\Prop$. +We start by defining the functor that assembles the CMRAs we need to the global resource CMRA: +\begin{align*} + \textdom{ResF}(\cofe^\op, \cofe) \eqdef{}& \record{\wld: \mathbb{N} \fpfn \agm(\latert \cofe), \pres: \maybe{\exm(\textdom{State})}, \ghostRes: \iFunc(\cofe^\op, \cofe)} +\end{align*} +Above, $\maybe\monoid$ is the monoid obtained by adding a unit to $\monoid$. +(It's not a coincidence that we used the same notation for the range of the core; it's the same type either way: $\monoid + 1$.) +Remember that $\iFunc$ is the user-chosen bifunctor from $\COFEs$ to $\CMRAs$ (see~\Sref{sec:logic}). +$\textdom{ResF}(\cofe^\op, \cofe)$ is a CMRA by lifting the individual CMRAs pointwise. +Furthermore, since $\Sigma$ is locally contractive, so is $\textdom{ResF}$. + +Now we can write down the recursive domain equation: +\[ \iPreProp \cong \UPred(\textdom{ResF}(\iPreProp, \iPreProp)) \] +$\iPreProp$ is a COFE defined as the fixed-point of a locally contractive bifunctor. +This fixed-point exists and is unique by America and Rutten's theorem~\cite{America-Rutten:JCSS89,birkedal:metric-space}. +We do not need to consider how the object is constructed. +We only need the isomorphism, given by +\begin{align*} + \Res &\eqdef \textdom{ResF}(\iPreProp, \iPreProp) \\ + \iProp &\eqdef \UPred(\Res) \\ + \wIso &: \iProp \nfn \iPreProp \\ + \wIso^{-1} &: \iPreProp \nfn \iProp +\end{align*} + +We then pick $\iProp$ as the interpretation of $\Prop$: +\[ \Sem{\Prop} \eqdef \iProp \] + + +\paragraph{Interpretation of assertions.} +$\iProp$ is a $\UPred$, and hence the definitions from \Sref{sec:upred-logic} apply. +We only have to define the interpretation of the missing connectives, the most interesting bits being primitive view shifts and weakest preconditions. + +\typedsection{World satisfaction}{\wsat{-}{-}{-} : + \Delta\textdom{State} \times + \Delta\pset{\mathbb{N}} \times + \textdom{Res} \nfn \SProp } +\begin{align*} + \wsatpre(n, \mask, \state, \rss, \rs) & \eqdef \begin{inbox}[t] + \rs \in \mval_{n+1} \land \rs.\pres = \exinj(\sigma) \land + \dom(\rss) \subseteq \mask \cap \dom( \rs.\wld) \land {}\\ + \All\iname \in \mask, \prop \in \iProp. (\rs.\wld)(\iname) \nequiv{n+1} \aginj(\latertinj(\wIso(\prop))) \Ra n \in \prop(\rss(\iname)) + \end{inbox}\\ + \wsat{\state}{\mask}{\rs} &\eqdef \set{0}\cup\setComp{n+1}{\Exists \rss : \mathbb{N} \fpfn \textdom{Res}. \wsatpre(n, \mask, \state, \rss, \rs \mtimes \prod_\iname \rss(\iname))} +\end{align*} + +\typedsection{Primitive view-shift}{\mathit{pvs}_{-}^{-}(-) : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \iProp \nfn \iProp} +\begin{align*} + \mathit{pvs}_{\mask_1}^{\mask_2}(\prop) &= \Lam \rs. \setComp{n}{\begin{aligned} + \All \rs_\f, k, \mask_\f, \state.& 0 < k \leq n \land (\mask_1 \cup \mask_2) \disj \mask_\f \land k \in \wsat\state{\mask_1 \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\& + \Exists \rsB. k \in \prop(\rsB) \land k \in \wsat\state{\mask_2 \cup \mask_\f}{\rsB \mtimes \rs_\f} + \end{aligned}} +\end{align*} + +\typedsection{Weakest precondition}{\mathit{wp}_{-}(-, -) : \Delta(\pset{\mathbb{N}}) \times \Delta(\textdom{Exp}) \times (\Delta(\textdom{Val}) \nfn \iProp) \nfn \iProp} + +$\textdom{wp}$ is defined as the fixed-point of a contractive function. +\begin{align*} + \textdom{pre-wp}(\textdom{wp})(\mask, \expr, \pred) &\eqdef \Lam\rs. \setComp{n}{\begin{aligned} + \All &\rs_\f, m, \mask_\f, \state. 0 \leq m < n \land \mask \disj \mask_\f \land m+1 \in \wsat\state{\mask \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\ + &(\All\val. \toval(\expr) = \val \Ra \Exists \rsB. m+1 \in \pred(\val)(\rsB) \land m+1 \in \wsat\state{\mask \cup \mask_\f}{\rsB \mtimes \rs_\f}) \land {}\\ + &(\toval(\expr) = \bot \land 0 < m \Ra \red(\expr, \state) \land \All \expr_2, \state_2, \expr_\f. \expr,\state \step \expr_2,\state_2,\expr_\f \Ra {}\\ + &\qquad \Exists \rsB_1, \rsB_2. m \in \wsat\state{\mask \cup \mask_\f}{\rsB_1 \mtimes \rsB_2 \mtimes \rs_\f} \land m \in \textdom{wp}(\mask, \expr_2, \pred)(\rsB_1) \land {}&\\ + &\qquad\qquad (\expr_\f = \bot \lor m \in \textdom{wp}(\top, \expr_\f, \Lam\any.\Lam\any.\mathbb{N})(\rsB_2)) + \end{aligned}} \\ + \textdom{wp}_\mask(\expr, \pred) &\eqdef \mathit{fix}(\textdom{pre-wp})(\mask, \expr, \pred) +\end{align*} + + +\typedsection{Interpretation of program logic assertions}{\Sem{\vctx \proves \term : \Prop} : \Sem{\vctx} \nfn \iProp} + +$\knowInv\iname\prop$, $\ownGGhost\melt$ and $\ownPhys\state$ are just syntactic sugar for forms of $\ownM{-}$. +\begin{align*} + \knowInv{\iname}{\prop} &\eqdef \ownM{[\iname \mapsto \aginj(\latertinj(\wIso(\prop)))], \munit, \munit} \\ + \ownGGhost{\melt} &\eqdef \ownM{\munit, \munit, \melt} \\ + \ownPhys{\state} &\eqdef \ownM{\munit, \exinj(\state), \munit} \\ +~\\ + \Sem{\vctx \proves \pvs[\mask_1][\mask_2] \prop : \Prop}_\gamma &\eqdef + \textdom{pvs}^{\Sem{\vctx \proves \mask_2 : \textlog{InvMask}}_\gamma}_{\Sem{\vctx \proves \mask_1 : \textlog{InvMask}}_\gamma}(\Sem{\vctx \proves \prop : \Prop}_\gamma) \\ + \Sem{\vctx \proves \wpre{\expr}[\mask]{\Ret\var.\prop} : \Prop}_\gamma &\eqdef + \textdom{wp}_{\Sem{\vctx \proves \mask : \textlog{InvMask}}_\gamma}(\Sem{\vctx \proves \expr : \textlog{Expr}}_\gamma, \Lam\val. \Sem{\vctx \proves \prop : \Prop}_{\gamma[\var\mapsto\val]}) +\end{align*} + %%% Local Variables: %%% mode: latex -- GitLab