diff --git a/prelude/collections.v b/prelude/collections.v index 5f888d68dd17d81588f4ba9816f7d61579e863b6..65cc0e194caaa02eebe7325f20509edfbee1f9ba 100644 --- a/prelude/collections.v +++ b/prelude/collections.v @@ -599,7 +599,7 @@ Section finite. Lemma empty_finite : set_finite ∅. Proof. by exists []; intros ?; rewrite elem_of_empty. Qed. Lemma singleton_finite (x : A) : set_finite {[ x ]}. - Proof. exists [x]; intros y ->/elem_of_singleton; left. Qed. + Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed. Lemma union_finite X Y : set_finite X → set_finite Y → set_finite (X ∪ Y). Proof. intros [lX ?] [lY ?]; exists (lX ++ lY); intros x. @@ -614,9 +614,9 @@ End finite. Section more_finite. Context `{Collection A B}. Lemma intersection_finite_l X Y : set_finite X → set_finite (X ∩ Y). - Proof. intros [l ?]; exists l; intros x [??]/elem_of_intersection; auto. Qed. + Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed. Lemma intersection_finite_r X Y : set_finite Y → set_finite (X ∩ Y). - Proof. intros [l ?]; exists l; intros x [??]/elem_of_intersection; auto. Qed. + Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed. Lemma difference_finite X Y : set_finite X → set_finite (X ∖ Y). - Proof. intros [l ?]; exists l; intros x [??]/elem_of_difference; auto. Qed. + Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed. End more_finite.