From 522e030492604245f84860e9d1691e96fe5d3027 Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Thu, 7 May 2020 09:55:09 +0200 Subject: [PATCH] make heap store (option val) in preparation for deallocation --- theories/heap_lang/adequacy.v | 8 ++--- theories/heap_lang/lang.v | 54 ++++++++++++++-------------- theories/heap_lang/lib/atomic_heap.v | 2 +- theories/heap_lang/lifting.v | 38 ++++++++++++++------ theories/heap_lang/metatheory.v | 14 ++++---- theories/heap_lang/proph_erasure.v | 53 ++++++++++++++------------- theories/heap_lang/total_adequacy.v | 2 +- 7 files changed, 95 insertions(+), 76 deletions(-) diff --git a/theories/heap_lang/adequacy.v b/theories/heap_lang/adequacy.v index 2b6366bb2..bce15e435 100644 --- a/theories/heap_lang/adequacy.v +++ b/theories/heap_lang/adequacy.v @@ -6,13 +6,13 @@ Set Default Proof Using "Type". Class heapPreG Σ := HeapPreG { heap_preG_iris :> invPreG Σ; - heap_preG_heap :> gen_heapPreG loc val Σ; - heap_preG_inv_heap :> inv_heapPreG loc val Σ; + heap_preG_heap :> gen_heapPreG loc (option val) Σ; + heap_preG_inv_heap :> inv_heapPreG loc (option val) Σ; heap_preG_proph :> proph_mapPreG proph_id (val * val) Σ; }. Definition heapΣ : gFunctors := - #[invΣ; gen_heapΣ loc val; inv_heapΣ loc val; proph_mapΣ proph_id (val * val)]. + #[invΣ; gen_heapΣ loc (option val); inv_heapΣ loc (option val); proph_mapΣ proph_id (val * val)]. Instance subG_heapPreG {Σ} : subG heapΣ Σ → heapPreG Σ. Proof. solve_inG. Qed. @@ -22,7 +22,7 @@ Definition heap_adequacy Σ `{!heapPreG Σ} s e σ φ : Proof. intros Hwp; eapply (wp_adequacy _ _); iIntros (??) "". iMod (gen_heap_init σ.(heap)) as (?) "Hh". - iMod (inv_heap_init loc val) as (?) ">Hi". + iMod (inv_heap_init loc (option val)) as (?) ">Hi". iMod (proph_map_init κs σ.(used_proph_id)) as (?) "Hp". iModIntro. iExists (λ σ κs, (gen_heap_ctx σ.(heap) ∗ proph_map_ctx κs σ.(used_proph_id))%I), diff --git a/theories/heap_lang/lang.v b/theories/heap_lang/lang.v index 0df1c4053..ee332ffbb 100644 --- a/theories/heap_lang/lang.v +++ b/theories/heap_lang/lang.v @@ -7,6 +7,8 @@ Set Default Proof Using "Type". (** heap_lang. A fairly simple language used for common Iris examples. +Noteworthy design choices: + - This is a right-to-left evaluated language, like CakeML and OCaml. The reason for this is that it makes curried functions usable: Given a WP for [f a b], we know that any effects [f] might have to not matter until after *both* [a] and @@ -185,9 +187,9 @@ Definition vals_compare_safe (vl v1 : val) : Prop := val_is_unboxed vl ∨ val_is_unboxed v1. Arguments vals_compare_safe !_ !_ /. -(** The state: heaps of vals. *) +(** The state: heaps of [option val]s, with [None] representing deallocated locations. *) Record state : Type := { - heap: gmap loc val; + heap: gmap loc (option val); used_proph_id: gset proph_id; }. @@ -544,7 +546,7 @@ Definition bin_op_eval (op : bin_op) (v1 v2 : val) : option val := | _, _ => None end. -Definition state_upd_heap (f: gmap loc val → gmap loc val) (σ: state) : state := +Definition state_upd_heap (f: gmap loc (option val) → gmap loc (option val)) (σ: state) : state := {| heap := f σ.(heap); used_proph_id := σ.(used_proph_id) |}. Arguments state_upd_heap _ !_ /. @@ -552,42 +554,42 @@ Definition state_upd_used_proph_id (f: gset proph_id → gset proph_id) (σ: sta {| heap := σ.(heap); used_proph_id := f σ.(used_proph_id) |}. Arguments state_upd_used_proph_id _ !_ /. -Fixpoint heap_array (l : loc) (vs : list val) : gmap loc val := +Fixpoint heap_array (l : loc) (vs : list val) : gmap loc (option val) := match vs with | [] => ∅ - | v :: vs' => {[l := v]} ∪ heap_array (l +â‚— 1) vs' + | v :: vs' => {[l := Some v]} ∪ heap_array (l +â‚— 1) vs' end. -Lemma heap_array_singleton l v : heap_array l [v] = {[l := v]}. +Lemma heap_array_singleton l v : heap_array l [v] = {[l := Some v]}. Proof. by rewrite /heap_array right_id. Qed. -Lemma heap_array_lookup l vs w k : - heap_array l vs !! k = Some w ↔ - ∃ j, 0 ≤ j ∧ k = l +â‚— j ∧ vs !! (Z.to_nat j) = Some w. +Lemma heap_array_lookup l vs ow k : + heap_array l vs !! k = Some ow ↔ + ∃ j w, 0 ≤ j ∧ k = l +â‚— j ∧ ow = Some w ∧ vs !! (Z.to_nat j) = Some w. Proof. revert k l; induction vs as [|v' vs IH]=> l' l /=. { rewrite lookup_empty. naive_solver lia. } rewrite -insert_union_singleton_l lookup_insert_Some IH. split. - - intros [[-> ->] | (Hl & j & ? & -> & ?)]. - { exists 0. rewrite loc_add_0. naive_solver lia. } - exists (1 + j). rewrite loc_add_assoc !Z.add_1_l Z2Nat.inj_succ; auto with lia. - - intros (j & ? & -> & Hil). destruct (decide (j = 0)); simplify_eq/=. + - intros [[-> ?] | (Hl & j & w & ? & -> & -> & ?)]. + { eexists 0, _. rewrite loc_add_0. naive_solver lia. } + eexists (1 + j), _. rewrite loc_add_assoc !Z.add_1_l Z2Nat.inj_succ; auto with lia. + - intros (j & ? & ? & -> & -> & Hil). destruct (decide (j = 0)); simplify_eq/=. { rewrite loc_add_0; eauto. } right. split. { rewrite -{1}(loc_add_0 l). intros ?%(inj (loc_add _)); lia. } assert (Z.to_nat j = S (Z.to_nat (j - 1))) as Hj. { rewrite -Z2Nat.inj_succ; last lia. f_equal; lia. } rewrite Hj /= in Hil. - exists (j - 1). rewrite loc_add_assoc Z.add_sub_assoc Z.add_simpl_l. + eexists (j - 1), _. rewrite loc_add_assoc Z.add_sub_assoc Z.add_simpl_l. auto with lia. Qed. -Lemma heap_array_map_disjoint (h : gmap loc val) (l : loc) (vs : list val) : +Lemma heap_array_map_disjoint (h : gmap loc (option val)) (l : loc) (vs : list val) : (∀ i, (0 ≤ i) → (i < length vs) → h !! (l +â‚— i) = None) → (heap_array l vs) ##ₘ h. Proof. intros Hdisj. apply map_disjoint_spec=> l' v1 v2. - intros (j&?&->&Hj%lookup_lt_Some%inj_lt)%heap_array_lookup. + intros (j&?&?&->&?&Hj%lookup_lt_Some%inj_lt)%heap_array_lookup. move: Hj. rewrite Z2Nat.id // => ?. by rewrite Hdisj. Qed. @@ -596,7 +598,7 @@ Definition state_init_heap (l : loc) (n : Z) (v : val) (σ : state) : state := state_upd_heap (λ h, heap_array l (replicate (Z.to_nat n) v) ∪ h) σ. Lemma state_init_heap_singleton l v σ : - state_init_heap l 1 v σ = state_upd_heap <[l:=v]> σ. + state_init_heap l 1 v σ = state_upd_heap <[l:=Some v]> σ. Proof. destruct σ as [h p]. rewrite /state_init_heap /=. f_equiv. rewrite right_id insert_union_singleton_l. done. @@ -642,28 +644,28 @@ Inductive head_step : expr → state → list observation → expr → state → (Val $ LitV $ LitLoc l) (state_init_heap l n v σ) [] | LoadS l v σ : - σ.(heap) !! l = Some v → + σ.(heap) !! l = Some $ Some v → head_step (Load (Val $ LitV $ LitLoc l)) σ [] (of_val v) σ [] - | StoreS l v σ : - is_Some (σ.(heap) !! l) → - head_step (Store (Val $ LitV $ LitLoc l) (Val v)) σ + | StoreS l v w σ : + σ.(heap) !! l = Some $ Some v → + head_step (Store (Val $ LitV $ LitLoc l) (Val w)) σ [] - (Val $ LitV LitUnit) (state_upd_heap <[l:=v]> σ) + (Val $ LitV LitUnit) (state_upd_heap <[l:=Some w]> σ) [] | CmpXchgS l v1 v2 vl σ b : - σ.(heap) !! l = Some vl → + σ.(heap) !! l = Some $ Some vl → (* Crucially, this compares the same way as [EqOp]! *) vals_compare_safe vl v1 → b = bool_decide (vl = v1) → head_step (CmpXchg (Val $ LitV $ LitLoc l) (Val v1) (Val v2)) σ [] - (Val $ PairV vl (LitV $ LitBool b)) (if b then state_upd_heap <[l:=v2]> σ else σ) + (Val $ PairV vl (LitV $ LitBool b)) (if b then state_upd_heap <[l:=Some v2]> σ else σ) [] | FaaS l i1 i2 σ : - σ.(heap) !! l = Some (LitV (LitInt i1)) → + σ.(heap) !! l = Some $ Some (LitV (LitInt i1)) → head_step (FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2)) σ [] - (Val $ LitV $ LitInt i1) (state_upd_heap <[l:=LitV (LitInt (i1 + i2))]>σ) + (Val $ LitV $ LitInt i1) (state_upd_heap <[l:=Some $ LitV (LitInt (i1 + i2))]>σ) [] | NewProphS σ p : p ∉ σ.(used_proph_id) → diff --git a/theories/heap_lang/lib/atomic_heap.v b/theories/heap_lang/lib/atomic_heap.v index 7e847e369..0ce56eadd 100644 --- a/theories/heap_lang/lib/atomic_heap.v +++ b/theories/heap_lang/lib/atomic_heap.v @@ -137,4 +137,4 @@ Definition primitive_atomic_heap `{!heapG Σ} : atomic_heap Σ := load_spec := primitive_load_spec; store_spec := primitive_store_spec; cmpxchg_spec := primitive_cmpxchg_spec; - mapsto_agree := gen_heap.mapsto_agree |}. + mapsto_agree := lifting.mapsto_agree |}. diff --git a/theories/heap_lang/lifting.v b/theories/heap_lang/lifting.v index 584d4a340..a5fb41562 100644 --- a/theories/heap_lang/lifting.v +++ b/theories/heap_lang/lifting.v @@ -10,8 +10,8 @@ Set Default Proof Using "Type". Class heapG Σ := HeapG { heapG_invG : invG Σ; - heapG_gen_heapG :> gen_heapG loc val Σ; - heapG_inv_heapG :> inv_heapG loc val Σ; + heapG_gen_heapG :> gen_heapG loc (option val) Σ; + heapG_inv_heapG :> inv_heapG loc (option val) Σ; heapG_proph_mapG :> proph_mapG proph_id (val * val) Σ; }. @@ -23,19 +23,21 @@ Instance heapG_irisG `{!heapG Σ} : irisG heap_lang Σ := { }. (** Override the notations so that scopes and coercions work out *) -Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V) +Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=option val) l q (Some v%V)) (at level 20, q at level 50, format "l ↦{ q } v") : bi_scope. -Notation "l ↦ v" := - (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : bi_scope. +Notation "l ↦ v" := (mapsto (L:=loc) (V:=option val) l 1%Qp (Some v%V)) + (at level 20) : bi_scope. Notation "l ↦{ q } -" := (∃ v, l ↦{q} v)%I (at level 20, q at level 50, format "l ↦{ q } -") : bi_scope. Notation "l ↦ -" := (l ↦{1} -)%I (at level 20) : bi_scope. -Notation "l ↦□ I" := (inv_mapsto (L:=loc) (V:=val) l I%stdpp%type) +Notation "l ↦□ I" := + (inv_mapsto (L:=loc) (V:=option val) l (from_option I%stdpp%type False)) (at level 20, format "l ↦□ I") : bi_scope. -Notation "l ↦_ I v" := (inv_mapsto_own (L:=loc) (V:=val) l v I%stdpp%type) +Notation "l ↦_ I v" := + (inv_mapsto_own (L:=loc) (V:=option val) l (Some v%V) (from_option I%stdpp%type False)) (at level 20, I at level 9, format "l ↦_ I v") : bi_scope. -Notation inv_heap_inv := (inv_heap_inv loc val). +Notation inv_heap_inv := (inv_heap_inv loc (option val)). (** The tactic [inv_head_step] performs inversion on hypotheses of the shape [head_step]. The tactic will discharge head-reductions starting from values, and @@ -257,6 +259,20 @@ Proof. Qed. (** Heap *) + +(** We need to adjust some [gen_heap] lemmas because of our value type +being [option val]. *) + +Lemma mapsto_agree l q1 q2 v1 v2 : l ↦{q1} v1 -∗ l ↦{q2} v2 -∗ ⌜v1 = v2âŒ. +Proof. iIntros "H1 H2". iDestruct (mapsto_agree with "H1 H2") as %[=?]. done. Qed. + +Lemma mapsto_combine l q1 q2 v1 v2 : + l ↦{q1} v1 -∗ l ↦{q2} v2 -∗ l ↦{q1 + q2} v1 ∗ ⌜v1 = v2âŒ. +Proof. + iIntros "Hl1 Hl2". iDestruct (mapsto_agree with "Hl1 Hl2") as %->. + iCombine "Hl1 Hl2" as "Hl". eauto with iFrame. +Qed. + (** The usable rules for [allocN] stated in terms of the [array] proposition are derived in te file [array]. *) Lemma heap_array_to_seq_meta l vs (n : nat) : @@ -267,7 +283,7 @@ Proof. iIntros (<-) "Hvs". iInduction vs as [|v vs] "IH" forall (l)=> //=. rewrite big_opM_union; last first. { apply map_disjoint_spec=> l' v1 v2 /lookup_singleton_Some [-> _]. - intros (j&?&Hjl&_)%heap_array_lookup. + intros (j&w&?&Hjl&?&?)%heap_array_lookup. rewrite loc_add_assoc -{1}[l']loc_add_0 in Hjl. simplify_eq; lia. } rewrite loc_add_0 -fmap_S_seq big_sepL_fmap. setoid_rewrite Nat2Z.inj_succ. setoid_rewrite <-Z.add_1_l. @@ -276,14 +292,14 @@ Proof. Qed. Lemma heap_array_to_seq_mapsto l v (n : nat) : - ([∗ map] l' ↦ v ∈ heap_array l (replicate n v), l' ↦ v) -∗ + ([∗ map] l' ↦ ov ∈ heap_array l (replicate n v), gen_heap.mapsto l' 1 ov) -∗ [∗ list] i ∈ seq 0 n, (l +â‚— (i : nat)) ↦ v. Proof. iIntros "Hvs". iInduction n as [|n] "IH" forall (l); simpl. { done. } rewrite big_opM_union; last first. { apply map_disjoint_spec=> l' v1 v2 /lookup_singleton_Some [-> _]. - intros (j&?&Hjl&_)%heap_array_lookup. + intros (j&w&?&Hjl&_)%heap_array_lookup. rewrite loc_add_assoc -{1}[l']loc_add_0 in Hjl. simplify_eq; lia. } rewrite loc_add_0 -fmap_S_seq big_sepL_fmap. setoid_rewrite Nat2Z.inj_succ. setoid_rewrite <-Z.add_1_l. diff --git a/theories/heap_lang/metatheory.v b/theories/heap_lang/metatheory.v index 0402c7eb7..51077ca0d 100644 --- a/theories/heap_lang/metatheory.v +++ b/theories/heap_lang/metatheory.v @@ -95,9 +95,9 @@ Qed. Lemma heap_closed_alloc σ l n w : 0 < n → is_closed_val w → - map_Forall (λ _ v, is_closed_val v) (heap σ) → + map_Forall (λ _ v, from_option is_closed_val true v) (heap σ) → (∀ i : Z, 0 ≤ i → i < n → heap σ !! (l +â‚— i) = None) → - map_Forall (λ _ v, is_closed_val v) + map_Forall (λ _ v, from_option is_closed_val true v) (heap_array l (replicate (Z.to_nat n) w) ∪ heap σ). Proof. intros Hn Hw Hσ Hl. @@ -110,9 +110,9 @@ Proof. apply lookup_union_Some in Hix; last first. { eapply heap_array_map_disjoint; rewrite replicate_length Z2Nat.id; auto with lia. } - destruct Hix as [(?&?&?&[-> Hlt%inj_lt]%lookup_replicate_1)%heap_array_lookup| + destruct Hix as [(?&?&?&?&?&[-> Hlt%inj_lt]%lookup_replicate_1)%heap_array_lookup| [j Hj]%elem_of_map_to_list%elem_of_list_lookup_1]. - + rewrite !Z2Nat.id in Hlt; eauto with lia. + + simplify_eq/=. rewrite !Z2Nat.id in Hlt; eauto with lia. + apply map_Forall_to_list in Hσ. by eapply Forall_lookup in Hσ; eauto; simpl in *. - apply map_Forall_to_list, Forall_forall. @@ -122,10 +122,10 @@ Qed. (* The stepping relation preserves closedness *) Lemma head_step_is_closed e1 σ1 obs e2 σ2 es : is_closed_expr [] e1 → - map_Forall (λ _ v, is_closed_val v) σ1.(heap) → + map_Forall (λ _ v, from_option is_closed_val true v) σ1.(heap) → head_step e1 σ1 obs e2 σ2 es → is_closed_expr [] e2 ∧ Forall (is_closed_expr []) es ∧ - map_Forall (λ _ v, is_closed_val v) σ2.(heap). + map_Forall (λ _ v, from_option is_closed_val true v) σ2.(heap). Proof. intros Cl1 Clσ1 STEP. induction STEP; simpl in *; split_and!; @@ -134,6 +134,8 @@ Proof. - unfold un_op_eval in *. repeat case_match; naive_solver. - eapply bin_op_eval_closed; eauto; naive_solver. - by apply heap_closed_alloc. + - select (_ !! _ = Some _) ltac:(fun H => by specialize (Clσ1 _ _ H)). + - select (_ !! _ = Some _) ltac:(fun H => by specialize (Clσ1 _ _ H)). - case_match; try apply map_Forall_insert_2; by naive_solver. Qed. diff --git a/theories/heap_lang/proph_erasure.v b/theories/heap_lang/proph_erasure.v index 0aa6acf52..d4f8ca3f0 100644 --- a/theories/heap_lang/proph_erasure.v +++ b/theories/heap_lang/proph_erasure.v @@ -115,7 +115,8 @@ Definition erase_ectx (K : ectx heap_ectx_lang) : ectx heap_ectx_lang := Definition erase_tp (tp : list expr) : list expr := erase_expr <$> tp. -Definition erase_heap (h : gmap loc val) : gmap loc val := erase_val <$> h. +Definition erase_heap (h : gmap loc (option val)) : gmap loc (option val) := + (λ ov : option val, erase_val <$> ov) <$> h. Definition erase_state (σ : state) : state := {| heap := erase_heap (heap σ); used_proph_id := ∅ |}. @@ -189,17 +190,17 @@ Qed. Lemma lookup_erase_heap_None h l : erase_heap h !! l = None ↔ h !! l = None. Proof. rewrite lookup_fmap; by destruct (h !! l). Qed. -Lemma lookup_erase_heap h l : erase_heap h !! l = erase_val <$> h !! l. +Lemma lookup_erase_heap h l : erase_heap h !! l = (λ ov, erase_val <$> ov) <$> h !! l. Proof. by rewrite lookup_fmap. Qed. Lemma erase_heap_insert h l v : - erase_heap (<[l := v]> h) = <[l := erase_val v]> (erase_heap h). + erase_heap (<[l := Some v]> h) = <[l := Some $ erase_val v]> (erase_heap h). Proof. by rewrite /erase_heap fmap_insert. Qed. -Lemma fmap_heap_array f l vs : - f <$> heap_array l vs = heap_array l (f <$> vs). +Lemma fmap_heap_array (f : val → val) l vs : + (λ ov : option val, f <$> ov) <$> heap_array l vs = heap_array l (f <$> vs). Proof. revert l; induction vs as [|v vs IHvs]; intros l; first by rewrite /= fmap_empty. @@ -247,41 +248,40 @@ Proof. rewrite ?erase_heap_insert /=; eauto using erase_state_init. Qed. Lemma erased_head_step_head_step_Load l σ v : - erase_heap (heap σ) !! l = Some v → + erase_heap (heap σ) !! l = Some (Some v) → head_steps_to_erasure_of (! #l) σ v (erase_state σ) []. Proof. intros Hl. rewrite lookup_erase_heap in Hl. - destruct (heap σ !! l) eqn:?; simplify_eq/=. + destruct (heap σ !! l) as [[|]|] eqn:?; simplify_eq/=. eexists _, _, _, _; simpl; split; first econstructor; eauto. Qed. -Lemma erased_head_step_head_step_Store l v σ : - is_Some (erase_heap (heap σ) !! l) → - head_steps_to_erasure_of (#l <- v) σ #() - {| heap := <[l:=erase_val v]> (erase_heap (heap σ)); used_proph_id := ∅ |} []. +Lemma erased_head_step_head_step_Store l v w σ : + erase_heap (heap σ) !! l = Some (Some v) → + head_steps_to_erasure_of (#l <- w) σ #() + {| heap := <[l:=Some $ erase_val w]> (erase_heap (heap σ)); used_proph_id := ∅ |} []. Proof. intros Hl. rewrite lookup_erase_heap in Hl. - destruct (heap σ !! l) eqn:?; simplify_eq/=; - last by apply is_Some_None in Hl. + destruct (heap σ !! l) as [[|]|] eqn:?; simplify_eq/=. eexists _, _, _, _; simpl; split; first econstructor; repeat split; eauto. by rewrite /state_upd_heap /erase_state /= erase_heap_insert. Qed. Lemma erased_head_step_head_step_CmpXchg l v w σ vl : - erase_heap (heap σ) !! l = Some vl → + erase_heap (heap σ) !! l = Some (Some vl) → vals_compare_safe vl (erase_val v) → head_steps_to_erasure_of (CmpXchg #l v w) σ (vl, #(bool_decide (vl = erase_val v)))%V (if bool_decide (vl = erase_val v) - then {| heap := <[l:=erase_val w]> (erase_heap (heap σ)); + then {| heap := <[l:=Some $ erase_val w]> (erase_heap (heap σ)); used_proph_id := ∅ |} else erase_state σ) []. Proof. intros Hl Hvl. rewrite lookup_erase_heap in Hl. - destruct (heap σ !! l) as [u|] eqn:?; simplify_eq/=. + destruct (heap σ !! l) as [[u|]|] eqn:?; simplify_eq/=. rewrite -> vals_compare_safe_erase in Hvl. destruct (decide (u = v)) as [->|Hneq]. - eexists _, _, _, _; simpl; split. @@ -295,15 +295,15 @@ Proof. by rewrite erase_val_inj_iff. Qed. Lemma erased_head_step_head_step_FAA l n m σ : - erase_heap (heap σ) !! l = Some #n → + erase_heap (heap σ) !! l = Some (Some #n) → head_steps_to_erasure_of (FAA #l #m) σ #n - {| heap := <[l:= #(n + m)]> (erase_heap (heap σ)); + {| heap := <[l:= Some #(n + m)]> (erase_heap (heap σ)); used_proph_id := ∅ |} []. Proof. intros Hl. rewrite lookup_erase_heap in Hl. - destruct (heap σ !! l) as [[[]| | | |]|] eqn:?; simplify_eq/=. + destruct (heap σ !! l) as [[[[]| | | |]|]|] eqn:?; simplify_eq/=. repeat econstructor; first by eauto. by rewrite /state_upd_heap /erase_state /= erase_heap_insert. Qed. @@ -615,7 +615,7 @@ Proof. Qed. Lemma head_step_erased_prim_step_CmpXchg v1 v2 σ l vl: - heap σ !! l = Some vl → + heap σ !! l = Some (Some vl) → vals_compare_safe vl v1 → ∃ e2' σ2' ef', prim_step (CmpXchg #l (erase_val v1) (erase_val v2)) (erase_state σ) [] e2' σ2' ef'. @@ -668,7 +668,7 @@ Proof. Qed. Lemma head_step_erased_prim_step_load σ l v: - heap σ !! l = Some v → + heap σ !! l = Some (Some v) → ∃ e2' σ2' ef', prim_step (! #l) (erase_state σ) [] e2' σ2' ef'. Proof. do 3 eexists; apply head_prim_step; econstructor. @@ -676,17 +676,16 @@ Proof. by destruct lookup; simplify_eq. Qed. -Lemma head_step_erased_prim_step_store σ l v: - is_Some (heap σ !! l) → - ∃ e2' σ2' ef', prim_step (#l <- erase_val v) (erase_state σ) [] e2' σ2' ef'. +Lemma head_step_erased_prim_step_store σ l v w : + heap σ !! l = Some (Some v) → + ∃ e2' σ2' ef', prim_step (#l <- erase_val w) (erase_state σ) [] e2' σ2' ef'. Proof. - intros [w Hw]. - do 3 eexists; apply head_prim_step; econstructor. + intros Hw. do 3 eexists; apply head_prim_step; econstructor. rewrite /erase_state /state_upd_heap /= lookup_erase_heap Hw; eauto. Qed. Lemma head_step_erased_prim_step_FAA σ l n n': - heap σ !! l = Some #n → + heap σ !! l = Some (Some #n) → ∃ e2' σ2' ef', prim_step (FAA #l #n') (erase_state σ) [] e2' σ2' ef'. Proof. intros Hl. diff --git a/theories/heap_lang/total_adequacy.v b/theories/heap_lang/total_adequacy.v index 346b024d2..8aa59f739 100644 --- a/theories/heap_lang/total_adequacy.v +++ b/theories/heap_lang/total_adequacy.v @@ -10,7 +10,7 @@ Definition heap_total Σ `{!heapPreG Σ} s e σ φ : Proof. intros Hwp; eapply (twp_total _ _); iIntros (?) "". iMod (gen_heap_init σ.(heap)) as (?) "Hh". - iMod (inv_heap_init loc val) as (?) ">Hi". + iMod (inv_heap_init loc (option val)) as (?) ">Hi". iMod (proph_map_init [] σ.(used_proph_id)) as (?) "Hp". iModIntro. iExists -- GitLab