diff --git a/prelude/gmultiset.v b/prelude/gmultiset.v index e157b48f0a518913ae3a785c2febbc0a97af042e..c8594c563b11664be0e5ca0c6e2e101a47441b36 100644 --- a/prelude/gmultiset.v +++ b/prelude/gmultiset.v @@ -239,6 +239,20 @@ Proof. - intros X Y HXY HYX; apply gmultiset_eq; intros x. by apply (anti_symm (≤)). Qed. +Lemma gmultiset_subseteq_alt X Y : + X ⊆ Y ↔ + map_relation (≤) (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y). +Proof. + apply forall_proper; intros x. unfold multiplicity. + destruct (gmultiset_car X !! x), (gmultiset_car Y !! x); naive_solver omega. +Qed. +Global Instance gmultiset_subseteq_dec X Y : Decision (X ⊆ Y). +Proof. + refine (cast_if (decide (map_relation (≤) + (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y)))); + by rewrite gmultiset_subseteq_alt. +Defined. + Lemma gmultiset_subset_subseteq X Y : X ⊂ Y → X ⊆ Y. Proof. apply strict_include. Qed. Hint Resolve gmultiset_subset_subseteq.