From 700a60a07a001a2cf21d2abb82d94780234a95c1 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Mon, 21 Nov 2016 09:26:40 +0100 Subject: [PATCH] =?UTF-8?q?Show=20that=20=E2=8A=86=20on=20multisets=20is?= =?UTF-8?q?=20decidable.?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- prelude/gmultiset.v | 14 ++++++++++++++ 1 file changed, 14 insertions(+) diff --git a/prelude/gmultiset.v b/prelude/gmultiset.v index e157b48f0..c8594c563 100644 --- a/prelude/gmultiset.v +++ b/prelude/gmultiset.v @@ -239,6 +239,20 @@ Proof. - intros X Y HXY HYX; apply gmultiset_eq; intros x. by apply (anti_symm (≤)). Qed. +Lemma gmultiset_subseteq_alt X Y : + X ⊆ Y ↔ + map_relation (≤) (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y). +Proof. + apply forall_proper; intros x. unfold multiplicity. + destruct (gmultiset_car X !! x), (gmultiset_car Y !! x); naive_solver omega. +Qed. +Global Instance gmultiset_subseteq_dec X Y : Decision (X ⊆ Y). +Proof. + refine (cast_if (decide (map_relation (≤) + (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y)))); + by rewrite gmultiset_subseteq_alt. +Defined. + Lemma gmultiset_subset_subseteq X Y : X ⊂ Y → X ⊆ Y. Proof. apply strict_include. Qed. Hint Resolve gmultiset_subset_subseteq. -- GitLab