diff --git a/program_logic/hoare.v b/program_logic/hoare.v index 84346a0a095f8e860fe3c57343105cc5c1fb06a5..4fa4299a1a3d0c278af18fe6e8c540f760124ad2 100644 --- a/program_logic/hoare.v +++ b/program_logic/hoare.v @@ -107,18 +107,15 @@ Proof. setoid_rewrite (comm _ _ R); apply ht_frame_l. Qed. Lemma ht_frame_step_l E E1 E2 P R1 R2 R3 e Φ : to_val e = None → E ⊥ E1 → E2 ⊆ E1 → ((R1 ={E1,E2}=> ▷ R2) ∧ (R2 ={E2,E1}=> R3) ∧ {{ P }} e @ E {{ Φ }}) - ⊢ {{ R1 ★ P }} e @ (E ∪ E1) {{ λ v, R3 ★ Φ v }}. + ⊢ {{ R1 ★ P }} e @ E ∪ E1 {{ λ v, R3 ★ Φ v }}. Proof. iIntros {???} "[#Hvs1 [#Hvs2 #Hwp]] ! [HR HP]". iApply (wp_frame_step_l E E1 E2); try done. - iSplitL "HR". - - (* TODO: Is there a way to do "apply Hvs1 in Hr"? *) - iPvs "Hvs1" "HR"; first by set_solver. - (* TODO: iApply pvs_intro? *) - rewrite -pvs_intro. - iNext. iPvs "Hvs2" "Hvs1"; first by set_solver. - rewrite -pvs_intro. done. - - iApply "Hwp". done. + iSplitL "HR"; [|by iApply "Hwp"]. + iPvs "Hvs1" "HR"; first by set_solver. + iPvsIntro. iNext. + iPvs "Hvs2" "Hvs1"; first by set_solver. + by iPvsIntro. Qed. Lemma ht_frame_step_r E E1 E2 P R1 R2 R3 e Φ : @@ -128,8 +125,7 @@ Lemma ht_frame_step_r E E1 E2 P R1 R2 R3 e Φ : Proof. iIntros {???} "[#Hvs1 [#Hvs2 #Hwp]]". setoid_rewrite (comm _ _ R3). - iApply ht_frame_step_l; try eassumption. iSplit; last iSplit; - iIntros "!"; done. + iApply ht_frame_step_l; try eassumption. repeat iSplit; by iIntros "!". Qed. Lemma ht_frame_step_l' E P R e Φ : diff --git a/program_logic/weakestpre.v b/program_logic/weakestpre.v index 93beb81c08013624af946a339e01037673c1b31a..6d576bd4b57d2399ea17dd0cc8a31a6be5fae1c2 100644 --- a/program_logic/weakestpre.v +++ b/program_logic/weakestpre.v @@ -198,33 +198,37 @@ Proof. Qed. Lemma wp_frame_step_r E E1 E2 e Φ R : to_val e = None → E ⊥ E1 → E2 ⊆ E1 → - (WP e @ E {{ Φ }} ★ |={E1,E2}=> ▷ |={E2,E1}=> R) - ⊢ WP e @ (E ∪ E1) {{ v, Φ v ★ R }}. + (WP e @ E {{ Φ }} ★ |={E1,E2}=> ▷ |={E2,E1}=> R) + ⊢ WP e @ E ∪ E1 {{ v, Φ v ★ R }}. +Proof. rewrite wp_eq pvs_eq=> He ??. uPred.unseal; split; intros n r' Hvalid (r&rR&Hr&Hwp&HR); cofe_subst. constructor; [done|]=>rf k Ef σ1 ?? Hws1. destruct Hwp as [|n r e ? Hgo]; [by rewrite to_of_val in He|]. (* "execute" HR *) - edestruct (HR (r ⋅ rf) (S k) (E ∪ Ef) σ1) as [s [Hvs Hws2]]; [omega|set_solver| |]. - { eapply wsat_change, Hws1; first by set_solver+. - rewrite assoc [rR ⋅ _]comm. done. } clear Hws1 HR. + destruct (HR (r ⋅ rf) (S k) (E ∪ Ef) σ1) as (s&Hvs&Hws2); auto. + { eapply wsat_proper, Hws1; first by set_solver+. + by rewrite assoc [rR ⋅ _]comm. } + clear Hws1 HR. (* Take a step *) - destruct (Hgo (s⋅rf) k (E2 ∪ Ef) σ1) as [Hsafe Hstep]; [done|set_solver| |]. - { eapply wsat_change, Hws2; first by set_solver+. - rewrite !assoc [s ⋅ _]comm. done. } clear Hgo. + destruct (Hgo (s⋅rf) k (E2 ∪ Ef) σ1) as [Hsafe Hstep]; auto. + { eapply wsat_proper, Hws2; first by set_solver+. + by rewrite !assoc [s ⋅ _]comm. } + clear Hgo. split; [done|intros e2 σ2 ef ?]. destruct (Hstep e2 σ2 ef) as (r2&r2'&Hws3&?&?); auto. clear Hws2. (* Execute 2nd part of the view shift *) - edestruct (Hvs (r2 ⋅ r2' ⋅ rf) k (E ∪ Ef) σ2) as [t [HR Hws4]]; [omega|set_solver| |]. - { eapply wsat_change, Hws3; first by set_solver+. - rewrite !assoc [_ ⋅ s]comm !assoc. done. } clear Hvs Hws3. + destruct (Hvs (r2 ⋅ r2' ⋅ rf) k (E ∪ Ef) σ2) as (t&HR&Hws4); auto. + { eapply wsat_proper, Hws3; first by set_solver+. + by rewrite !assoc [_ ⋅ s]comm !assoc. } + clear Hvs Hws3. (* Execute the rest of e *) exists (r2 ⋅ t), r2'. split_and?; auto. - - eapply wsat_change, Hws4; first by set_solver+. - rewrite !assoc [_ ⋅ t]comm. done. - - rewrite -uPred_sep_eq. move:(wp_frame_r). rewrite wp_eq=>Hframe. + - eapply wsat_proper, Hws4; first by set_solver+. + by rewrite !assoc [_ ⋅ t]comm. + - rewrite -uPred_sep_eq. move: wp_frame_r. rewrite wp_eq=>Hframe. apply Hframe; first by auto. uPred.unseal; exists r2, t; split_and?; auto. - move:(wp_mask_frame_mono). rewrite wp_eq=>Hmask. + move: wp_mask_frame_mono. rewrite wp_eq=>Hmask. eapply (Hmask E); by auto. Qed. Lemma wp_bind `{LanguageCtx Λ K} E e Φ : diff --git a/program_logic/wsat.v b/program_logic/wsat.v index c08a73ce50357da3d433a71af1938f37d10ee165..a7d4a2ffc7ec9ad884d18c3ddadbb2599d8c0aaf 100644 --- a/program_logic/wsat.v +++ b/program_logic/wsat.v @@ -42,11 +42,11 @@ Proof. Qed. Global Instance wsat_ne n : Proper (dist n ==> iff) (@wsat Λ Σ n E σ) | 1. Proof. by intros E σ w1 w2 Hw; split; apply wsat_ne'. Qed. -Global Instance wsat_proper n : Proper ((≡) ==> iff) (@wsat Λ Σ n E σ) | 1. +Global Instance wsat_proper' n : Proper ((≡) ==> iff) (@wsat Λ Σ n E σ) | 1. Proof. by intros E σ w1 w2 Hw; apply wsat_ne, equiv_dist. Qed. -Lemma wsat_change n E1 E2 σ r1 r2 : +Lemma wsat_proper n E1 E2 σ r1 r2 : E1 = E2 → r1 ≡ r2 → wsat n E1 σ r1 → wsat n E2 σ r2. -Proof. move=>->->. done. Qed. +Proof. by move=>->->. Qed. Lemma wsat_le n n' E σ r : wsat n E σ r → n' ≤ n → wsat n' E σ r. Proof. destruct n as [|n], n' as [|n']; simpl; try by (auto with lia).