diff --git a/program_logic/hoare.v b/program_logic/hoare.v index ec2e3edf4627f2c19058cb0aa6d53080df32bac9..dbda42db2f9d95d31c8d4dcaa0ad8eb62c4bc468 100644 --- a/program_logic/hoare.v +++ b/program_logic/hoare.v @@ -36,7 +36,7 @@ Proof. by rewrite -wp_value; apply const_intro. Qed. Lemma ht_vs E P P' Q Q' e : - ((P >{E}=> P') ∧ {{ P' }} e @ E {{ Q' }} ∧ ∀ v, Q' v >{E}=> Q v) + ((P ={E}=> P') ∧ {{ P' }} e @ E {{ Q' }} ∧ ∀ v, Q' v ={E}=> Q v) ⊑ {{ P }} e @ E {{ Q }}. Proof. apply (always_intro' _ _), impl_intro_l. @@ -47,7 +47,7 @@ Proof. Qed. Lemma ht_atomic E1 E2 P P' Q Q' e : E2 ⊆ E1 → atomic e → - ((P >{E1,E2}=> P') ∧ {{ P' }} e @ E2 {{ Q' }} ∧ ∀ v, Q' v >{E2,E1}=> Q v) + ((P ={E1,E2}=> P') ∧ {{ P' }} e @ E2 {{ Q' }} ∧ ∀ v, Q' v ={E2,E1}=> Q v) ⊑ {{ P }} e @ E1 {{ Q }}. Proof. intros ??; apply (always_intro' _ _), impl_intro_l. diff --git a/program_logic/hoare_lifting.v b/program_logic/hoare_lifting.v index aa72735a1e1a9b1acbb2dd8dffd09542c97fb888..17d14715ad6afe88ce148ea8b20d140d4813229b 100644 --- a/program_logic/hoare_lifting.v +++ b/program_logic/hoare_lifting.v @@ -20,8 +20,8 @@ Lemma ht_lift_step E1 E2 E1 ⊆ E2 → to_val e1 = None → reducible e1 σ1 → (∀ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → φ e2 σ2 ef) → - ((P >{E2,E1}=> ownP σ1 ★ ▷ P') ∧ ∀ e2 σ2 ef, - (■φ e2 σ2 ef ★ ownP σ2 ★ P' >{E1,E2}=> Q1 e2 σ2 ef ★ Q2 e2 σ2 ef) ∧ + ((P ={E2,E1}=> ownP σ1 ★ ▷ P') ∧ ∀ e2 σ2 ef, + (■φ e2 σ2 ef ★ ownP σ2 ★ P' ={E1,E2}=> Q1 e2 σ2 ef ★ Q2 e2 σ2 ef) ∧ {{ Q1 e2 σ2 ef }} e2 @ E2 {{ R }} ∧ {{ Q2 e2 σ2 ef }} ef ?@ coPset_all {{ λ _, True }}) ⊑ {{ P }} e1 @ E2 {{ R }}. diff --git a/program_logic/viewshifts.v b/program_logic/viewshifts.v index f238f45c548d2ecf03ed0bc66a11a1a2bae193e6..96f9fd7ee3088c3e1b5c637e5b3a2a7410d7436a 100644 --- a/program_logic/viewshifts.v +++ b/program_logic/viewshifts.v @@ -6,22 +6,22 @@ Definition vs {Λ Σ} (E1 E2 : coPset) (P Q : iProp Λ Σ) : iProp Λ Σ := (□ (P → pvs E1 E2 Q))%I. Arguments vs {_ _} _ _ _%I _%I. Instance: Params (@vs) 4. -Notation "P >{ E1 , E2 }=> Q" := (vs E1 E2 P%I Q%I) +Notation "P ={ E1 , E2 }=> Q" := (vs E1 E2 P%I Q%I) (at level 199, E1 at level 1, E2 at level 1, - format "P >{ E1 , E2 }=> Q") : uPred_scope. -Notation "P >{ E1 , E2 }=> Q" := (True ⊑ vs E1 E2 P%I Q%I) + format "P ={ E1 , E2 }=> Q") : uPred_scope. +Notation "P ={ E1 , E2 }=> Q" := (True ⊑ vs E1 E2 P%I Q%I) (at level 199, E1 at level 1, E2 at level 1, - format "P >{ E1 , E2 }=> Q") : C_scope. -Notation "P >{ E }=> Q" := (vs E E P%I Q%I) - (at level 199, E at level 1, format "P >{ E }=> Q") : uPred_scope. -Notation "P >{ E }=> Q" := (True ⊑ vs E E P%I Q%I) - (at level 199, E at level 1, format "P >{ E }=> Q") : C_scope. + format "P ={ E1 , E2 }=> Q") : C_scope. +Notation "P ={ E }=> Q" := (vs E E P%I Q%I) + (at level 199, E at level 1, format "P ={ E }=> Q") : uPred_scope. +Notation "P ={ E }=> Q" := (True ⊑ vs E E P%I Q%I) + (at level 199, E at level 1, format "P ={ E }=> Q") : C_scope. Section vs. Context {Λ : language} {Σ : iFunctor}. Implicit Types P Q R : iProp Λ Σ. -Lemma vs_alt E1 E2 P Q : (P ⊑ pvs E1 E2 Q) → P >{E1,E2}=> Q. +Lemma vs_alt E1 E2 P Q : (P ⊑ pvs E1 E2 Q) → P ={E1,E2}=> Q. Proof. intros; rewrite -{1}always_const; apply always_intro, impl_intro_l. by rewrite always_const (right_id _ _). @@ -35,60 +35,60 @@ Global Instance vs_proper E1 E2 : Proper ((≡) ==> (≡) ==> (≡)) (@vs Λ Σ Proof. apply ne_proper_2, _. Qed. Lemma vs_mono E1 E2 P P' Q Q' : - P ⊑ P' → Q' ⊑ Q → (P' >{E1,E2}=> Q') ⊑ (P >{E1,E2}=> Q). + P ⊑ P' → Q' ⊑ Q → (P' ={E1,E2}=> Q') ⊑ (P ={E1,E2}=> Q). Proof. by intros HP HQ; rewrite /vs -HP HQ. Qed. Global Instance vs_mono' E1 E2 : Proper (flip (⊑) ==> (⊑) ==> (⊑)) (@vs Λ Σ E1 E2). Proof. by intros until 2; apply vs_mono. Qed. -Lemma vs_false_elim E1 E2 P : False >{E1,E2}=> P. +Lemma vs_false_elim E1 E2 P : False ={E1,E2}=> P. Proof. apply vs_alt, False_elim. Qed. -Lemma vs_timeless E P : TimelessP P → ▷ P >{E}=> P. +Lemma vs_timeless E P : TimelessP P → ▷ P ={E}=> P. Proof. by intros ?; apply vs_alt, pvs_timeless. Qed. Lemma vs_transitive E1 E2 E3 P Q R : - E2 ⊆ E1 ∪ E3 → ((P >{E1,E2}=> Q) ∧ (Q >{E2,E3}=> R)) ⊑ (P >{E1,E3}=> R). + E2 ⊆ E1 ∪ E3 → ((P ={E1,E2}=> Q) ∧ (Q ={E2,E3}=> R)) ⊑ (P ={E1,E3}=> R). Proof. intros; rewrite -always_and; apply always_intro, impl_intro_l. rewrite always_and (associative _) (always_elim (P → _)) impl_elim_r. by rewrite pvs_impl_r; apply pvs_trans. Qed. -Lemma vs_transitive' E P Q R : ((P >{E}=> Q) ∧ (Q >{E}=> R)) ⊑ (P >{E}=> R). +Lemma vs_transitive' E P Q R : ((P ={E}=> Q) ∧ (Q ={E}=> R)) ⊑ (P ={E}=> R). Proof. apply vs_transitive; solve_elem_of. Qed. -Lemma vs_reflexive E P : P >{E}=> P. +Lemma vs_reflexive E P : P ={E}=> P. Proof. apply vs_alt, pvs_intro. Qed. -Lemma vs_impl E P Q : □ (P → Q) ⊑ (P >{E}=> Q). +Lemma vs_impl E P Q : □ (P → Q) ⊑ (P ={E}=> Q). Proof. apply always_intro, impl_intro_l. by rewrite always_elim impl_elim_r -pvs_intro. Qed. -Lemma vs_frame_l E1 E2 P Q R : (P >{E1,E2}=> Q) ⊑ (R ★ P >{E1,E2}=> R ★ Q). +Lemma vs_frame_l E1 E2 P Q R : (P ={E1,E2}=> Q) ⊑ (R ★ P ={E1,E2}=> R ★ Q). Proof. apply always_intro, impl_intro_l. rewrite -pvs_frame_l always_and_sep_r -always_wand_impl -(associative _). by rewrite always_elim wand_elim_r. Qed. -Lemma vs_frame_r E1 E2 P Q R : (P >{E1,E2}=> Q) ⊑ (P ★ R >{E1,E2}=> Q ★ R). +Lemma vs_frame_r E1 E2 P Q R : (P ={E1,E2}=> Q) ⊑ (P ★ R ={E1,E2}=> Q ★ R). Proof. rewrite !(commutative _ _ R); apply vs_frame_l. Qed. Lemma vs_mask_frame E1 E2 Ef P Q : - Ef ∩ (E1 ∪ E2) = ∅ → (P >{E1,E2}=> Q) ⊑ (P >{E1 ∪ Ef,E2 ∪ Ef}=> Q). + Ef ∩ (E1 ∪ E2) = ∅ → (P ={E1,E2}=> Q) ⊑ (P ={E1 ∪ Ef,E2 ∪ Ef}=> Q). Proof. intros ?; apply always_intro, impl_intro_l; rewrite (pvs_mask_frame _ _ Ef)//. by rewrite always_elim impl_elim_r. Qed. -Lemma vs_mask_frame' E Ef P Q : Ef ∩ E = ∅ → (P >{E}=> Q) ⊑ (P >{E ∪ Ef}=> Q). +Lemma vs_mask_frame' E Ef P Q : Ef ∩ E = ∅ → (P ={E}=> Q) ⊑ (P ={E ∪ Ef}=> Q). Proof. intros; apply vs_mask_frame; solve_elem_of. Qed. Lemma vs_open_close N E P Q R : nclose N ⊆ E → - (inv N R ∧ (▷ R ★ P >{E ∖ nclose N}=> ▷ R ★ Q)) ⊑ (P >{E}=> Q). + (inv N R ∧ (▷ R ★ P ={E ∖ nclose N}=> ▷ R ★ Q)) ⊑ (P ={E}=> Q). Proof. intros; apply (always_intro' _ _), impl_intro_l. rewrite associative (commutative _ P) -associative. @@ -99,7 +99,7 @@ Proof. by rewrite /vs always_elim impl_elim_r. Qed. -Lemma vs_alloc (N : namespace) P : ▷ P >{N}=> inv N P. +Lemma vs_alloc (N : namespace) P : ▷ P ={N}=> inv N P. Proof. by intros; apply vs_alt, pvs_alloc. Qed. End vs. @@ -110,14 +110,14 @@ Implicit Types a : A. Implicit Types P Q R : iProp Λ (globalC Σ). Lemma vs_own_updateP E γ a φ : - a ~~>: φ → own i γ a >{E}=> ∃ a', ■φ a' ∧ own i γ a'. + a ~~>: φ → own i γ a ={E}=> ∃ a', ■φ a' ∧ own i γ a'. Proof. by intros; apply vs_alt, own_updateP. Qed. Lemma vs_own_updateP_empty `{Empty A, !CMRAIdentity A} E γ φ : - ∅ ~~>: φ → True >{E}=> ∃ a', ■φ a' ∧ own i γ a'. + ∅ ~~>: φ → True ={E}=> ∃ a', ■φ a' ∧ own i γ a'. Proof. by intros; eapply vs_alt, own_updateP_empty. Qed. -Lemma vs_update E γ a a' : a ~~> a' → own i γ a >{E}=> own i γ a'. +Lemma vs_update E γ a a' : a ~~> a' → own i γ a ={E}=> own i γ a'. Proof. by intros; apply vs_alt, own_update. Qed. End vs_ghost.