diff --git a/prelude/gmultiset.v b/prelude/gmultiset.v index 2aeeb99c3a89782cf0e1c61096e8121928a2a05a..07e467bcd7c3de88d1104ba0a8edc2cf3c24bae0 100644 --- a/prelude/gmultiset.v +++ b/prelude/gmultiset.v @@ -39,11 +39,15 @@ Section definitions. let (X) := X in let (Y) := Y in GMultiSet $ difference_with (λ x y, let z := x - y in guard (0 < z); Some (pred z)) X Y. + + Instance gmultiset_dom : Dom (gmultiset A) (gset A) := λ X, + let (X) := X in dom _ X. End definitions. Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq. Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty. Typeclasses Opaque gmultiset_singleton gmultiset_union gmultiset_difference. +Typeclasses Opaque gmultiset_dom. (** These instances are declared using [Hint Extern] to avoid too eager type class search. *) @@ -63,6 +67,8 @@ Hint Extern 1 (Elements _ (gmultiset _)) => eapply @gmultiset_elements : typeclass_instances. Hint Extern 1 (Size (gmultiset _)) => eapply @gmultiset_size : typeclass_instances. +Hint Extern 1 (Dom (gmultiset _) _) => + eapply @gmultiset_dom : typeclass_instances. Section lemmas. Context `{Countable A}. @@ -196,6 +202,12 @@ Proof. exists (x,n); split; [|by apply elem_of_map_to_list]. apply elem_of_replicate; auto with omega. Qed. +Lemma gmultiset_elem_of_dom x X : x ∈ dom (gset A) X ↔ x ∈ X. +Proof. + unfold dom, gmultiset_dom, elem_of at 2, gmultiset_elem_of, multiplicity. + destruct X as [X]; simpl; rewrite elem_of_dom, <-not_eq_None_Some. + destruct (X !! x); naive_solver omega. +Qed. (* Properties of the size operation *) Lemma gmultiset_size_empty : size (∅ : gmultiset A) = 0.