From iris.proofmode Require Import base tactics classes. From iris.base_logic.lib Require Export fancy_updates. From iris.program_logic Require Export language. (* FIXME: If we import iris.bi.weakestpre earlier texan triples do not get pretty-printed correctly. *) From iris.bi Require Export weakestpre. From iris Require Import options. Import uPred. Class irisG (Λ : language) (Σ : gFunctors) := IrisG { iris_invG :> invG Σ; (** The state interpretation is an invariant that should hold in between each step of reduction. Here [Λstate] is the global state, [list Λobservation] are the remaining observations, and [nat] is the number of forked-off threads (not the total number of threads, which is one higher because there is always a main thread). *) state_interp : state Λ → list (observation Λ) → nat → iProp Σ; (** A fixed postcondition for any forked-off thread. For most languages, e.g. heap_lang, this will simply be [True]. However, it is useful if one wants to keep track of resources precisely, as in e.g. Iron. *) fork_post : val Λ → iProp Σ; }. Global Opaque iris_invG. Definition wp_pre `{!irisG Λ Σ} (s : stuckness) (wp : coPset -d> expr Λ -d> (val Λ -d> iPropO Σ) -d> iPropO Σ) : coPset -d> expr Λ -d> (val Λ -d> iPropO Σ) -d> iPropO Σ := λ E e1 Φ, match to_val e1 with | Some v => |={E}=> Φ v | None => ∀ σ1 κ κs n, state_interp σ1 (κ ++ κs) n ={E,∅}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌝ ∗ ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌝ ={∅}=∗ ▷ |={∅,E}=> state_interp σ2 κs (length efs + n) ∗ wp E e2 Φ ∗ [∗ list] i ↦ ef ∈ efs, wp ⊤ ef fork_post end%I. Local Instance wp_pre_contractive `{!irisG Λ Σ} s : Contractive (wp_pre s). Proof. rewrite /wp_pre=> n wp wp' Hwp E e1 Φ. repeat (f_contractive || f_equiv); apply Hwp. Qed. Definition wp_def `{!irisG Λ Σ} : Wp Λ (iProp Σ) stuckness := λ s : stuckness, fixpoint (wp_pre s). Definition wp_aux : seal (@wp_def). Proof. by eexists. Qed. Definition wp' := wp_aux.(unseal). Arguments wp' {Λ Σ _}. Existing Instance wp'. Lemma wp_eq `{!irisG Λ Σ} : wp = @wp_def Λ Σ _. Proof. rewrite -wp_aux.(seal_eq) //. Qed. Section wp. Context `{!irisG Λ Σ}. Implicit Types s : stuckness. Implicit Types P : iProp Σ. Implicit Types Φ : val Λ → iProp Σ. Implicit Types v : val Λ. Implicit Types e : expr Λ. (* Weakest pre *) Lemma wp_unfold s E e Φ : WP e @ s; E {{ Φ }} ⊣⊢ wp_pre s (wp (PROP:=iProp Σ) s) E e Φ. Proof. rewrite wp_eq. apply (fixpoint_unfold (wp_pre s)). Qed. Global Instance wp_ne s E e n : Proper (pointwise_relation _ (dist n) ==> dist n) (wp (PROP:=iProp Σ) s E e). Proof. revert e. induction (lt_wf n) as [n _ IH]=> e Φ Ψ HΦ. rewrite !wp_unfold /wp_pre. (* FIXME: figure out a way to properly automate this proof *) (* FIXME: reflexivity, as being called many times by f_equiv and f_contractive is very slow here *) do 24 (f_contractive || f_equiv). apply IH; first lia. intros v. eapply dist_le; eauto with lia. Qed. Global Instance wp_proper s E e : Proper (pointwise_relation _ (≡) ==> (≡)) (wp (PROP:=iProp Σ) s E e). Proof. by intros Φ Φ' ?; apply equiv_dist=>n; apply wp_ne=>v; apply equiv_dist. Qed. Global Instance wp_contractive s E e n : TCEq (to_val e) None → Proper (pointwise_relation _ (dist_later n) ==> dist n) (wp (PROP:=iProp Σ) s E e). Proof. intros He Φ Ψ HΦ. rewrite !wp_unfold /wp_pre He. by repeat (f_contractive || f_equiv). Qed. Lemma wp_value' s E Φ v : Φ v ⊢ WP of_val v @ s; E {{ Φ }}. Proof. iIntros "HΦ". rewrite wp_unfold /wp_pre to_of_val. auto. Qed. Lemma wp_value_inv' s E Φ v : WP of_val v @ s; E {{ Φ }} ={E}=∗ Φ v. Proof. by rewrite wp_unfold /wp_pre to_of_val. Qed. Lemma wp_strong_mono s1 s2 E1 E2 e Φ Ψ : s1 ⊑ s2 → E1 ⊆ E2 → WP e @ s1; E1 {{ Φ }} -∗ (∀ v, Φ v ={E2}=∗ Ψ v) -∗ WP e @ s2; E2 {{ Ψ }}. Proof. iIntros (? HE) "H HΦ". iLöb as "IH" forall (e E1 E2 HE Φ Ψ). rewrite !wp_unfold /wp_pre. destruct (to_val e) as [v|] eqn:?. { iApply ("HΦ" with "[> -]"). by iApply (fupd_mask_mono E1 _). } iIntros (σ1 κ κs n) "Hσ". iMod (fupd_intro_mask' E2 E1) as "Hclose"; first done. iMod ("H" with "[$]") as "[% H]". iModIntro. iSplit; [by destruct s1, s2|]. iIntros (e2 σ2 efs Hstep). iMod ("H" with "[//]") as "H". iIntros "!> !>". iMod "H" as "(Hσ & H & Hefs)". iMod "Hclose" as "_". iModIntro. iFrame "Hσ". iSplitR "Hefs". - iApply ("IH" with "[//] H HΦ"). - iApply (big_sepL_impl with "Hefs"); iIntros "!>" (k ef _). iIntros "H". iApply ("IH" with "[] H"); auto. Qed. Lemma fupd_wp s E e Φ : (|={E}=> WP e @ s; E {{ Φ }}) ⊢ WP e @ s; E {{ Φ }}. Proof. rewrite wp_unfold /wp_pre. iIntros "H". destruct (to_val e) as [v|] eqn:?. { by iMod "H". } iIntros (σ1 κ κs n) "Hσ1". iMod "H". by iApply "H". Qed. Lemma wp_fupd s E e Φ : WP e @ s; E {{ v, |={E}=> Φ v }} ⊢ WP e @ s; E {{ Φ }}. Proof. iIntros "H". iApply (wp_strong_mono s s E with "H"); auto. Qed. Lemma wp_atomic s E1 E2 e Φ `{!Atomic (stuckness_to_atomicity s) e} : (|={E1,E2}=> WP e @ s; E2 {{ v, |={E2,E1}=> Φ v }}) ⊢ WP e @ s; E1 {{ Φ }}. Proof. iIntros "H". rewrite !wp_unfold /wp_pre. destruct (to_val e) as [v|] eqn:He. { by iDestruct "H" as ">>> $". } iIntros (σ1 κ κs n) "Hσ". iMod "H". iMod ("H" $! σ1 with "Hσ") as "[$ H]". iModIntro. iIntros (e2 σ2 efs Hstep). iMod ("H" with "[//]") as "H". iIntros "!>!>". iMod "H" as "(Hσ & H & Hefs)". destruct s. - rewrite !wp_unfold /wp_pre. destruct (to_val e2) as [v2|] eqn:He2. + iDestruct "H" as ">> $". by iFrame. + iMod ("H" $! _ [] with "[$]") as "[H _]". iDestruct "H" as %(? & ? & ? & ? & ?). by edestruct (atomic _ _ _ _ _ Hstep). - destruct (atomic _ _ _ _ _ Hstep) as [v <-%of_to_val]. iMod (wp_value_inv' with "H") as ">H". iModIntro. iFrame "Hσ Hefs". by iApply wp_value'. Qed. Lemma wp_step_fupd s E1 E2 e P Φ : TCEq (to_val e) None → E2 ⊆ E1 → (|={E1}[E2]▷=> P) -∗ WP e @ s; E2 {{ v, P ={E1}=∗ Φ v }} -∗ WP e @ s; E1 {{ Φ }}. Proof. rewrite !wp_unfold /wp_pre. iIntros (-> ?) "HR H". iIntros (σ1 κ κs n) "Hσ". iMod "HR". iMod ("H" with "[$]") as "[$ H]". iIntros "!>" (e2 σ2 efs Hstep). iMod ("H" $! e2 σ2 efs with "[% //]") as "H". iIntros "!>!>". iMod "H" as "(Hσ & H & Hefs)". iMod "HR". iModIntro. iFrame "Hσ Hefs". iApply (wp_strong_mono s s E2 with "H"); [done..|]. iIntros (v) "H". by iApply "H". Qed. Lemma wp_bind K `{!LanguageCtx K} s E e Φ : WP e @ s; E {{ v, WP K (of_val v) @ s; E {{ Φ }} }} ⊢ WP K e @ s; E {{ Φ }}. Proof. iIntros "H". iLöb as "IH" forall (E e Φ). rewrite wp_unfold /wp_pre. destruct (to_val e) as [v|] eqn:He. { apply of_to_val in He as <-. by iApply fupd_wp. } rewrite wp_unfold /wp_pre fill_not_val //. iIntros (σ1 κ κs n) "Hσ". iMod ("H" with "[$]") as "[% H]". iModIntro; iSplit. { destruct s; eauto using reducible_fill. } iIntros (e2 σ2 efs Hstep). destruct (fill_step_inv e σ1 κ e2 σ2 efs) as (e2'&->&?); auto. iMod ("H" $! e2' σ2 efs with "[//]") as "H". iIntros "!>!>". iMod "H" as "(Hσ & H & Hefs)". iModIntro. iFrame "Hσ Hefs". by iApply "IH". Qed. Lemma wp_bind_inv K `{!LanguageCtx K} s E e Φ : WP K e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ v, WP K (of_val v) @ s; E {{ Φ }} }}. Proof. iIntros "H". iLöb as "IH" forall (E e Φ). rewrite !wp_unfold /wp_pre. destruct (to_val e) as [v|] eqn:He. { apply of_to_val in He as <-. by rewrite !wp_unfold /wp_pre. } rewrite fill_not_val //. iIntros (σ1 κ κs n) "Hσ". iMod ("H" with "[$]") as "[% H]". iModIntro; iSplit. { destruct s; eauto using reducible_fill_inv. } iIntros (e2 σ2 efs Hstep). iMod ("H" $! (K e2) σ2 efs with "[]") as "H"; [by eauto using fill_step|]. iIntros "!>!>". iMod "H" as "(Hσ & H & Hefs)". iModIntro. iFrame "Hσ Hefs". by iApply "IH". Qed. (** * Derived rules *) Lemma wp_mono s E e Φ Ψ : (∀ v, Φ v ⊢ Ψ v) → WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ Ψ }}. Proof. iIntros (HΦ) "H"; iApply (wp_strong_mono with "H"); auto. iIntros (v) "?". by iApply HΦ. Qed. Lemma wp_stuck_mono s1 s2 E e Φ : s1 ⊑ s2 → WP e @ s1; E {{ Φ }} ⊢ WP e @ s2; E {{ Φ }}. Proof. iIntros (?) "H". iApply (wp_strong_mono with "H"); auto. Qed. Lemma wp_stuck_weaken s E e Φ : WP e @ s; E {{ Φ }} ⊢ WP e @ E ?{{ Φ }}. Proof. apply wp_stuck_mono. by destruct s. Qed. Lemma wp_mask_mono s E1 E2 e Φ : E1 ⊆ E2 → WP e @ s; E1 {{ Φ }} ⊢ WP e @ s; E2 {{ Φ }}. Proof. iIntros (?) "H"; iApply (wp_strong_mono with "H"); auto. Qed. Global Instance wp_mono' s E e : Proper (pointwise_relation _ (⊢) ==> (⊢)) (wp (PROP:=iProp Σ) s E e). Proof. by intros Φ Φ' ?; apply wp_mono. Qed. Global Instance wp_flip_mono' s E e : Proper (pointwise_relation _ (flip (⊢)) ==> (flip (⊢))) (wp (PROP:=iProp Σ) s E e). Proof. by intros Φ Φ' ?; apply wp_mono. Qed. Lemma wp_value s E Φ e v : IntoVal e v → Φ v ⊢ WP e @ s; E {{ Φ }}. Proof. intros <-. by apply wp_value'. Qed. Lemma wp_value_fupd' s E Φ v : (|={E}=> Φ v) ⊢ WP of_val v @ s; E {{ Φ }}. Proof. intros. by rewrite -wp_fupd -wp_value'. Qed. Lemma wp_value_fupd s E Φ e v `{!IntoVal e v} : (|={E}=> Φ v) ⊢ WP e @ s; E {{ Φ }}. Proof. intros. rewrite -wp_fupd -wp_value //. Qed. Lemma wp_value_inv s E Φ e v : IntoVal e v → WP e @ s; E {{ Φ }} ={E}=∗ Φ v. Proof. intros <-. by apply wp_value_inv'. Qed. Lemma wp_frame_l s E e Φ R : R ∗ WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ v, R ∗ Φ v }}. Proof. iIntros "[? H]". iApply (wp_strong_mono with "H"); auto with iFrame. Qed. Lemma wp_frame_r s E e Φ R : WP e @ s; E {{ Φ }} ∗ R ⊢ WP e @ s; E {{ v, Φ v ∗ R }}. Proof. iIntros "[H ?]". iApply (wp_strong_mono with "H"); auto with iFrame. Qed. Lemma wp_frame_step_l s E1 E2 e Φ R : TCEq (to_val e) None → E2 ⊆ E1 → (|={E1}[E2]▷=> R) ∗ WP e @ s; E2 {{ Φ }} ⊢ WP e @ s; E1 {{ v, R ∗ Φ v }}. Proof. iIntros (??) "[Hu Hwp]". iApply (wp_step_fupd with "Hu"); try done. iApply (wp_mono with "Hwp"). by iIntros (?) "$$". Qed. Lemma wp_frame_step_r s E1 E2 e Φ R : TCEq (to_val e) None → E2 ⊆ E1 → WP e @ s; E2 {{ Φ }} ∗ (|={E1}[E2]▷=> R) ⊢ WP e @ s; E1 {{ v, Φ v ∗ R }}. Proof. rewrite [(WP _ @ _; _ {{ _ }} ∗ _)%I]comm; setoid_rewrite (comm _ _ R). apply wp_frame_step_l. Qed. Lemma wp_frame_step_l' s E e Φ R : TCEq (to_val e) None → ▷ R ∗ WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ v, R ∗ Φ v }}. Proof. iIntros (?) "[??]". iApply (wp_frame_step_l s E E); try iFrame; eauto. Qed. Lemma wp_frame_step_r' s E e Φ R : TCEq (to_val e) None → WP e @ s; E {{ Φ }} ∗ ▷ R ⊢ WP e @ s; E {{ v, Φ v ∗ R }}. Proof. iIntros (?) "[??]". iApply (wp_frame_step_r s E E); try iFrame; eauto. Qed. Lemma wp_wand s E e Φ Ψ : WP e @ s; E {{ Φ }} -∗ (∀ v, Φ v -∗ Ψ v) -∗ WP e @ s; E {{ Ψ }}. Proof. iIntros "Hwp H". iApply (wp_strong_mono with "Hwp"); auto. iIntros (?) "?". by iApply "H". Qed. Lemma wp_wand_l s E e Φ Ψ : (∀ v, Φ v -∗ Ψ v) ∗ WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ Ψ }}. Proof. iIntros "[H Hwp]". iApply (wp_wand with "Hwp H"). Qed. Lemma wp_wand_r s E e Φ Ψ : WP e @ s; E {{ Φ }} ∗ (∀ v, Φ v -∗ Ψ v) ⊢ WP e @ s; E {{ Ψ }}. Proof. iIntros "[Hwp H]". iApply (wp_wand with "Hwp H"). Qed. Lemma wp_frame_wand_l s E e Q Φ : Q ∗ WP e @ s; E {{ v, Q -∗ Φ v }} -∗ WP e @ s; E {{ Φ }}. Proof. iIntros "[HQ HWP]". iApply (wp_wand with "HWP"). iIntros (v) "HΦ". by iApply "HΦ". Qed. End wp. (** Proofmode class instances *) Section proofmode_classes. Context `{!irisG Λ Σ}. Implicit Types P Q : iProp Σ. Implicit Types Φ : val Λ → iProp Σ. Global Instance frame_wp p s E e R Φ Ψ : (∀ v, Frame p R (Φ v) (Ψ v)) → Frame p R (WP e @ s; E {{ Φ }}) (WP e @ s; E {{ Ψ }}). Proof. rewrite /Frame=> HR. rewrite wp_frame_l. apply wp_mono, HR. Qed. Global Instance is_except_0_wp s E e Φ : IsExcept0 (WP e @ s; E {{ Φ }}). Proof. by rewrite /IsExcept0 -{2}fupd_wp -except_0_fupd -fupd_intro. Qed. Global Instance elim_modal_bupd_wp p s E e P Φ : ElimModal True p false (|==> P) P (WP e @ s; E {{ Φ }}) (WP e @ s; E {{ Φ }}). Proof. by rewrite /ElimModal intuitionistically_if_elim (bupd_fupd E) fupd_frame_r wand_elim_r fupd_wp. Qed. Global Instance elim_modal_fupd_wp p s E e P Φ : ElimModal True p false (|={E}=> P) P (WP e @ s; E {{ Φ }}) (WP e @ s; E {{ Φ }}). Proof. by rewrite /ElimModal intuitionistically_if_elim fupd_frame_r wand_elim_r fupd_wp. Qed. Global Instance elim_modal_fupd_wp_atomic p s E1 E2 e P Φ : Atomic (stuckness_to_atomicity s) e → ElimModal True p false (|={E1,E2}=> P) P (WP e @ s; E1 {{ Φ }}) (WP e @ s; E2 {{ v, |={E2,E1}=> Φ v }})%I. Proof. intros. by rewrite /ElimModal intuitionistically_if_elim fupd_frame_r wand_elim_r wp_atomic. Qed. Global Instance add_modal_fupd_wp s E e P Φ : AddModal (|={E}=> P) P (WP e @ s; E {{ Φ }}). Proof. by rewrite /AddModal fupd_frame_r wand_elim_r fupd_wp. Qed. Global Instance elim_acc_wp {X} E1 E2 α β γ e s Φ : Atomic (stuckness_to_atomicity s) e → ElimAcc (X:=X) (fupd E1 E2) (fupd E2 E1) α β γ (WP e @ s; E1 {{ Φ }}) (λ x, WP e @ s; E2 {{ v, |={E2}=> β x ∗ (γ x -∗? Φ v) }})%I. Proof. intros ?. rewrite /ElimAcc. iIntros "Hinner >Hacc". iDestruct "Hacc" as (x) "[Hα Hclose]". iApply (wp_wand with "(Hinner Hα)"). iIntros (v) ">[Hβ HΦ]". iApply "HΦ". by iApply "Hclose". Qed. Global Instance elim_acc_wp_nonatomic {X} E α β γ e s Φ : ElimAcc (X:=X) (fupd E E) (fupd E E) α β γ (WP e @ s; E {{ Φ }}) (λ x, WP e @ s; E {{ v, |={E}=> β x ∗ (γ x -∗? Φ v) }})%I. Proof. rewrite /ElimAcc. iIntros "Hinner >Hacc". iDestruct "Hacc" as (x) "[Hα Hclose]". iApply wp_fupd. iApply (wp_wand with "(Hinner Hα)"). iIntros (v) ">[Hβ HΦ]". iApply "HΦ". by iApply "Hclose". Qed. End proofmode_classes.