Newer
Older
From stdpp Require Export functions gmap gmultiset.
From iris.algebra Require Export monoid.
Set Default Proof Using "Type*".
Local Existing Instances monoid_ne monoid_assoc monoid_comm
monoid_left_id monoid_right_id monoid_proper
monoid_homomorphism_rel_po monoid_homomorphism_rel_proper
monoid_homomorphism_op_proper
monoid_homomorphism_ne weak_monoid_homomorphism_proper.
(** We define the following big operators with binders build in:
- The operator [ [^o list] k ↦ x ∈ l, P ] folds over a list [l]. The binder [x]
refers to each element at index [k].
- The operator [ [^o map] k ↦ x ∈ m, P ] folds over a map [m]. The binder [x]
refers to each element at index [k].
- The operator [ [^o set] x ∈ X, P ] folds over a set [X]. The binder [x] refers
to each element.
Since these big operators are like quantifiers, they have the same precedence as
[∀] and [∃]. *)
(** * Big ops over lists *)
Fixpoint big_opL `{Monoid M o} {A} (f : nat → A → M) (xs : list A) : M :=
match xs with
| [] => monoid_unit
| x :: xs => o (f 0 x) (big_opL (λ n, f (S n)) xs)
end.
Arguments big_opL {M} o {_ A} _ !_ /.
Notation "'[' '^' o 'list]' k ↦ x ∈ l , P" := (big_opL o (λ k x, P) l)
(at level 200, o at level 1, l at level 10, k, x at level 1, right associativity,
format "[ ^ o list] k ↦ x ∈ l , P") : stdpp_scope.
Notation "'[' '^' o 'list]' x ∈ l , P" := (big_opL o (λ _ x, P) l)
(at level 200, o at level 1, l at level 10, x at level 1, right associativity,
Definition big_opM `{Monoid M o} `{Countable K} {A} (f : K → A → M)
(m : gmap K A) : M := big_opL o (λ _, curry f) (map_to_list m).
Arguments big_opM {M} o {_ K _ _ A} _ _ : simpl never.
Typeclasses Opaque big_opM.
Notation "'[' '^' o 'map]' k ↦ x ∈ m , P" := (big_opM o (λ k x, P) m)
(at level 200, o at level 1, m at level 10, k, x at level 1, right associativity,
format "[ ^ o map] k ↦ x ∈ m , P") : stdpp_scope.
Notation "'[' '^' o 'map]' x ∈ m , P" := (big_opM o (λ _ x, P) m)
(at level 200, o at level 1, m at level 10, x at level 1, right associativity,
Definition big_opS `{Monoid M o} `{Countable A} (f : A → M)
(X : gset A) : M := big_opL o (λ _, f) (elements X).
Arguments big_opS {M} o {_ A _ _} _ _ : simpl never.
Typeclasses Opaque big_opS.
Notation "'[' '^' o 'set]' x ∈ X , P" := (big_opS o (λ x, P) X)
(at level 200, o at level 1, X at level 10, x at level 1, right associativity,
Definition big_opMS `{Monoid M o} `{Countable A} (f : A → M)
(X : gmultiset A) : M := big_opL o (λ _, f) (elements X).
Arguments big_opMS {M} o {_ A _ _} _ _ : simpl never.
Typeclasses Opaque big_opMS.
Notation "'[' '^' o 'mset]' x ∈ X , P" := (big_opMS o (λ x, P) X)
(at level 200, o at level 1, X at level 10, x at level 1, right associativity,
(** * Properties about big ops *)
Section big_op.
Context `{Monoid M o}.
Implicit Types xs : list M.
Infix "`o`" := o (at level 50, left associativity).
(** ** Big ops over lists *)
Section list.
Context {A : Type}.
Implicit Types l : list A.
Implicit Types f g : nat → A → M.
Lemma big_opL_nil f : ([^o list] k↦y ∈ [], f k y) = monoid_unit.
Proof. done. Qed.
Lemma big_opL_cons f x l :
([^o list] k↦y ∈ x :: l, f k y) = f 0 x `o` ([^o list] k↦y ∈ l, f (S k) y).
Proof. done. Qed.
Lemma big_opL_singleton f x : ([^o list] k↦y ∈ [x], f k y) ≡ f 0 x.
Proof. by rewrite /= right_id. Qed.
Lemma big_opL_app f l1 l2 :
([^o list] k↦y ∈ l1 ++ l2, f k y)
≡ ([^o list] k↦y ∈ l1, f k y) `o` ([^o list] k↦y ∈ l2, f (length l1 + k) y).
Proof.
revert f. induction l1 as [|x l1 IH]=> f /=; first by rewrite left_id.
by rewrite IH assoc.
Qed.
Lemma big_opL_unit l : ([^o list] k↦y ∈ l, monoid_unit) ≡ (monoid_unit : M).
Proof. induction l; rewrite /= ?left_id //. Qed.
Lemma big_opL_forall R f g l :
Reflexive R →
Proper (R ==> R ==> R) o →
(∀ k y, l !! k = Some y → R (f k y) (g k y)) →
R ([^o list] k ↦ y ∈ l, f k y) ([^o list] k ↦ y ∈ l, g k y).
Proof.
intros ??. revert f g. induction l as [|x l IH]=> f g ? //=; f_equiv; eauto.
Qed.
Lemma big_opL_ext f g l :
(∀ k y, l !! k = Some y → f k y = g k y) →
([^o list] k ↦ y ∈ l, f k y) = ([^o list] k ↦ y ∈ l, g k y).
Proof. apply big_opL_forall; apply _. Qed.
Lemma big_opL_proper f g l :
(∀ k y, l !! k = Some y → f k y ≡ g k y) →
([^o list] k ↦ y ∈ l, f k y) ≡ ([^o list] k ↦ y ∈ l, g k y).
Proof. apply big_opL_forall; apply _. Qed.
Lemma big_opL_permutation (f : A → M) l1 l2 :
l1 ≡ₚ l2 → ([^o list] x ∈ l1, f x) ≡ ([^o list] x ∈ l2, f x).
Proof.
induction 1 as [|x xs1 xs2 ? IH|x y xs|xs1 xs2 xs3]; simpl; auto.
- by rewrite IH.
- by rewrite !assoc (comm _ (f x)).
- by etrans.
Qed.
Global Instance big_opL_permutation' (f : A → M) :
Proper ((≡ₚ) ==> (≡)) (big_opL o (λ _, f)).
Proof. intros xs1 xs2. apply big_opL_permutation. Qed.
Global Instance big_opL_ne n :
Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==>
eq ==> dist n) (big_opL o (A:=A)).
Proof. intros f f' Hf l ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
Global Instance big_opL_proper' :
Proper (pointwise_relation _ (pointwise_relation _ (≡)) ==> eq ==> (≡))
(big_opL o (A:=A)).
Proof. intros f f' Hf l ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
Lemma big_opL_consZ_l (f : Z → A → M) x l :
([^o list] k↦y ∈ x :: l, f k y) = f 0 x `o` ([^o list] k↦y ∈ l, f (1 + k)%Z y).
Proof. rewrite big_opL_cons. auto using big_opL_ext with f_equal lia. Qed.
Lemma big_opL_consZ_r (f : Z → A → M) x l :
([^o list] k↦y ∈ x :: l, f k y) = f 0 x `o` ([^o list] k↦y ∈ l, f (k + 1)%Z y).
Proof. rewrite big_opL_cons. auto using big_opL_ext with f_equal lia. Qed.
Lemma big_opL_fmap {B} (h : A → B) (f : nat → B → M) l :
([^o list] k↦y ∈ h <$> l, f k y) ≡ ([^o list] k↦y ∈ l, f k (h y)).
Proof. revert f. induction l as [|x l IH]=> f; csimpl=> //. by rewrite IH. Qed.
([^o list] k↦x ∈ l, f k x `o` g k x)
≡ ([^o list] k↦x ∈ l, f k x) `o` ([^o list] k↦x ∈ l, g k x).
Proof.
revert f g; induction l as [|x l IH]=> f g /=; first by rewrite left_id.
by rewrite IH -!assoc (assoc _ (g _ _)) [(g _ _ `o` _)]comm -!assoc.
Qed.
End list.
Lemma big_opL_bind {A B} (h : A → list B) (f : B → M) l :
([^o list] y ∈ l ≫= h, f y) ≡ ([^o list] x ∈ l, [^o list] y ∈ h x, f y).
Proof.
revert f. induction l as [|x l IH]=> f; csimpl=> //. by rewrite big_opL_app IH.
Qed.
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
(** ** Big ops over finite maps *)
Section gmap.
Context `{Countable K} {A : Type}.
Implicit Types m : gmap K A.
Implicit Types f g : K → A → M.
Lemma big_opM_forall R f g m :
Reflexive R → Proper (R ==> R ==> R) o →
(∀ k x, m !! k = Some x → R (f k x) (g k x)) →
R ([^o map] k ↦ x ∈ m, f k x) ([^o map] k ↦ x ∈ m, g k x).
Proof.
intros ?? Hf. apply (big_opL_forall R); auto.
intros k [i x] ?%elem_of_list_lookup_2. by apply Hf, elem_of_map_to_list.
Qed.
Lemma big_opM_ext f g m :
(∀ k x, m !! k = Some x → f k x = g k x) →
([^o map] k ↦ x ∈ m, f k x) = ([^o map] k ↦ x ∈ m, g k x).
Proof. apply big_opM_forall; apply _. Qed.
Lemma big_opM_proper f g m :
(∀ k x, m !! k = Some x → f k x ≡ g k x) →
([^o map] k ↦ x ∈ m, f k x) ≡ ([^o map] k ↦ x ∈ m, g k x).
Proof. apply big_opM_forall; apply _. Qed.
Global Instance big_opM_ne n :
Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> eq ==> dist n)
Proof. intros f g Hf m ? <-. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
Global Instance big_opM_proper' :
Proper (pointwise_relation _ (pointwise_relation _ (≡)) ==> eq ==> (≡))
Proof. intros f g Hf m ? <-. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
Lemma big_opM_empty f : ([^o map] k↦x ∈ ∅, f k x) = monoid_unit.
Proof. by rewrite /big_opM map_to_list_empty. Qed.
Lemma big_opM_insert f m i x :
m !! i = None →
([^o map] k↦y ∈ <[i:=x]> m, f k y) ≡ f i x `o` ([^o map] k↦y ∈ m, f k y).
Proof. intros ?. by rewrite /big_opM map_to_list_insert. Qed.
Lemma big_opM_delete f m i x :
m !! i = Some x →
([^o map] k↦y ∈ m, f k y) ≡ f i x `o` ([^o map] k↦y ∈ delete i m, f k y).
Proof.
intros. rewrite -big_opM_insert ?lookup_delete //.
by rewrite insert_delete insert_id.
Qed.
Lemma big_opM_singleton f i x : ([^o map] k↦y ∈ {[i:=x]}, f k y) ≡ f i x.
Proof.
rewrite -insert_empty big_opM_insert/=; last auto using lookup_empty.
by rewrite big_opM_empty right_id.
Qed.
Lemma big_opM_unit m : ([^o map] k↦y ∈ m, monoid_unit) ≡ (monoid_unit : M).
Proof. induction m using map_ind; rewrite /= ?big_opM_insert ?left_id //. Qed.
Lemma big_opM_fmap {B} (h : A → B) (f : K → B → M) m :
([^o map] k↦y ∈ h <$> m, f k y) ≡ ([^o map] k↦y ∈ m, f k (h y)).
Proof.
rewrite /big_opM map_to_list_fmap big_opL_fmap.
by apply big_opL_proper=> ? [??].
Qed.
Lemma big_opM_insert_override (f : K → A → M) m i x x' :
m !! i = Some x → f i x ≡ f i x' →
([^o map] k↦y ∈ <[i:=x']> m, f k y) ≡ ([^o map] k↦y ∈ m, f k y).
Proof.
intros ? Hx. rewrite -insert_delete big_opM_insert ?lookup_delete //.
by rewrite -Hx -big_opM_delete.
Qed.
Lemma big_opM_fn_insert {B} (g : K → A → B → M) (f : K → B) m i (x : A) b :
m !! i = None →
([^o map] k↦y ∈ <[i:=x]> m, g k y (<[i:=b]> f k))
Proof.
intros. rewrite big_opM_insert // fn_lookup_insert.
f_equiv; apply big_opM_proper; auto=> k y ?.
by rewrite fn_lookup_insert_ne; last set_solver.
Qed.
Lemma big_opM_fn_insert' (f : K → M) m i x P :
m !! i = None →
([^o map] k↦y ∈ <[i:=x]> m, <[i:=P]> f k) ≡ (P `o` ([^o map] k↦y ∈ m, f k)).
Proof. apply (big_opM_fn_insert (λ _ _, id)). Qed.
Lemma big_opM_union f m1 m2 :
m1 ##ₘ m2 →
([^o map] k↦y ∈ m1 ∪ m2, f k y) ≡ ([^o map] k↦y ∈ m1, f k y) `o` ([^o map] k↦y ∈ m2, f k y).
Proof.
intros. induction m1 as [|i x m ? IH] using map_ind.
{ by rewrite big_opM_empty !left_id. }
decompose_map_disjoint.
rewrite -insert_union_l !big_opM_insert //;
last by apply lookup_union_None.
rewrite -assoc IH //.
Qed.
([^o map] k↦x ∈ m, f k x `o` g k x)
≡ ([^o map] k↦x ∈ m, f k x) `o` ([^o map] k↦x ∈ m, g k x).
Proof. rewrite /big_opM -big_opL_op. by apply big_opL_proper=> ? [??]. Qed.
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
End gmap.
(** ** Big ops over finite sets *)
Section gset.
Context `{Countable A}.
Implicit Types X : gset A.
Implicit Types f : A → M.
Lemma big_opS_forall R f g X :
Reflexive R → Proper (R ==> R ==> R) o →
(∀ x, x ∈ X → R (f x) (g x)) →
R ([^o set] x ∈ X, f x) ([^o set] x ∈ X, g x).
Proof.
intros ?? Hf. apply (big_opL_forall R); auto.
intros k x ?%elem_of_list_lookup_2. by apply Hf, elem_of_elements.
Qed.
Lemma big_opS_ext f g X :
(∀ x, x ∈ X → f x = g x) →
([^o set] x ∈ X, f x) = ([^o set] x ∈ X, g x).
Proof. apply big_opS_forall; apply _. Qed.
Lemma big_opS_proper f g X :
(∀ x, x ∈ X → f x ≡ g x) →
([^o set] x ∈ X, f x) ≡ ([^o set] x ∈ X, g x).
Proof. apply big_opS_forall; apply _. Qed.
Global Instance big_opS_ne n :
Proper (pointwise_relation _ (dist n) ==> eq ==> dist n) (big_opS o (A:=A)).
Proof. intros f g Hf m ? <-. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
Global Instance big_opS_proper' :
Proper (pointwise_relation _ (≡) ==> eq ==> (≡)) (big_opS o (A:=A)).
Proof. intros f g Hf m ? <-. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
Lemma big_opS_empty f : ([^o set] x ∈ ∅, f x) = monoid_unit.
Proof. by rewrite /big_opS elements_empty. Qed.
Lemma big_opS_insert f X x :
x ∉ X → ([^o set] y ∈ {[ x ]} ∪ X, f y) ≡ (f x `o` ([^o set] y ∈ X, f y)).
Proof. intros. by rewrite /big_opS elements_union_singleton. Qed.
Lemma big_opS_fn_insert {B} (f : A → B → M) h X x b :
x ∉ X →
([^o set] y ∈ {[ x ]} ∪ X, f y (<[x:=b]> h y))
Proof.
intros. rewrite big_opS_insert // fn_lookup_insert.
f_equiv; apply big_opS_proper; auto=> y ?.
by rewrite fn_lookup_insert_ne; last set_solver.
Qed.
Lemma big_opS_fn_insert' f X x P :
x ∉ X → ([^o set] y ∈ {[ x ]} ∪ X, <[x:=P]> f y) ≡ (P `o` ([^o set] y ∈ X, f y)).
Proof. apply (big_opS_fn_insert (λ y, id)). Qed.
Lemma big_opS_union f X Y :
Jacques-Henri Jourdan
committed
X ## Y →
([^o set] y ∈ X ∪ Y, f y) ≡ ([^o set] y ∈ X, f y) `o` ([^o set] y ∈ Y, f y).
Proof.
{ by rewrite left_id_L big_opS_empty left_id. }
rewrite -assoc_L !big_opS_insert; [|set_solver..].
by rewrite -assoc IH; last set_solver.
Qed.
Lemma big_opS_delete f X x :
x ∈ X → ([^o set] y ∈ X, f y) ≡ f x `o` ([^o set] y ∈ X ∖ {[ x ]}, f y).
Proof.
intros. rewrite -big_opS_insert; last set_solver.
by rewrite -union_difference_L; last set_solver.
Qed.
Lemma big_opS_singleton f x : ([^o set] y ∈ {[ x ]}, f y) ≡ f x.
Proof. intros. by rewrite /big_opS elements_singleton /= right_id. Qed.
Lemma big_opS_unit X : ([^o set] y ∈ X, monoid_unit) ≡ (monoid_unit : M).
Proof.
induction X using set_ind_L; rewrite /= ?big_opS_insert ?left_id //.
([^o set] y ∈ X, f y `o` g y) ≡ ([^o set] y ∈ X, f y) `o` ([^o set] y ∈ X, g y).
Proof. by rewrite /big_opS -big_opL_op. Qed.
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
End gset.
Lemma big_opM_dom `{Countable K} {A} (f : K → M) (m : gmap K A) :
([^o map] k↦_ ∈ m, f k) ≡ ([^o set] k ∈ dom _ m, f k).
Proof.
induction m as [|i x ?? IH] using map_ind; [by rewrite dom_empty_L|].
by rewrite dom_insert_L big_opM_insert // IH big_opS_insert ?not_elem_of_dom.
Qed.
(** ** Big ops over finite msets *)
Section gmultiset.
Context `{Countable A}.
Implicit Types X : gmultiset A.
Implicit Types f : A → M.
Lemma big_opMS_forall R f g X :
Reflexive R → Proper (R ==> R ==> R) o →
(∀ x, x ∈ X → R (f x) (g x)) →
R ([^o mset] x ∈ X, f x) ([^o mset] x ∈ X, g x).
Proof.
intros ?? Hf. apply (big_opL_forall R); auto.
intros k x ?%elem_of_list_lookup_2. by apply Hf, gmultiset_elem_of_elements.
Qed.
Lemma big_opMS_ext f g X :
(∀ x, x ∈ X → f x = g x) →
([^o mset] x ∈ X, f x) = ([^o mset] x ∈ X, g x).
Proof. apply big_opMS_forall; apply _. Qed.
Lemma big_opMS_proper f g X :
(∀ x, x ∈ X → f x ≡ g x) →
([^o mset] x ∈ X, f x) ≡ ([^o mset] x ∈ X, g x).
Proof. apply big_opMS_forall; apply _. Qed.
Global Instance big_opMS_ne n :
Proper (pointwise_relation _ (dist n) ==> eq ==> dist n) (big_opMS o (A:=A)).
Proof. intros f g Hf m ? <-. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.
Global Instance big_opMS_proper' :
Proper (pointwise_relation _ (≡) ==> eq ==> (≡)) (big_opMS o (A:=A)).
Proof. intros f g Hf m ? <-. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.
Lemma big_opMS_empty f : ([^o mset] x ∈ ∅, f x) = monoid_unit.
Proof. by rewrite /big_opMS gmultiset_elements_empty. Qed.
([^o mset] y ∈ X ⊎ Y, f y) ≡ ([^o mset] y ∈ X, f y) `o` ([^o mset] y ∈ Y, f y).
Proof. by rewrite /big_opMS gmultiset_elements_disj_union big_opL_app. Qed.
Lemma big_opMS_singleton f x : ([^o mset] y ∈ {[ x ]}, f y) ≡ f x.
Proof.
intros. by rewrite /big_opMS gmultiset_elements_singleton /= right_id.
Qed.
Lemma big_opMS_delete f X x :
x ∈ X → ([^o mset] y ∈ X, f y) ≡ f x `o` ([^o mset] y ∈ X ∖ {[ x ]}, f y).
intros. rewrite -big_opMS_singleton -big_opMS_disj_union.
by rewrite -gmultiset_disj_union_difference'.
Lemma big_opMS_unit X : ([^o mset] y ∈ X, monoid_unit) ≡ (monoid_unit : M).
Proof.
induction X using gmultiset_ind;
rewrite /= ?big_opMS_disj_union ?big_opMS_singleton ?left_id //.
([^o mset] y ∈ X, f y `o` g y) ≡ ([^o mset] y ∈ X, f y) `o` ([^o mset] y ∈ X, g y).
Proof. by rewrite /big_opMS -big_opL_op. Qed.
End gmultiset.
End big_op.
Section homomorphisms.
Context `{Monoid M1 o1, Monoid M2 o2}.
Infix "`o1`" := o1 (at level 50, left associativity).
Infix "`o2`" := o2 (at level 50, left associativity).
Robbert Krebbers
committed
(** The ssreflect rewrite tactic only works for relations that have a
[RewriteRelation] instance. For the purpose of this section, we want to
rewrite with arbitrary relations, so we declare any relation to be a
[RewriteRelation]. *)
Local Instance: ∀ {A} (R : relation A), RewriteRelation R := {}.
Lemma big_opL_commute {A} (h : M1 → M2) `{!MonoidHomomorphism o1 o2 R h}
(f : nat → A → M1) l :
R (h ([^o1 list] k↦x ∈ l, f k x)) ([^o2 list] k↦x ∈ l, h (f k x)).
Proof.
revert f. induction l as [|x l IH]=> f /=.
- apply monoid_homomorphism_unit.
- by rewrite monoid_homomorphism IH.
Lemma big_opL_commute1 {A} (h : M1 → M2) `{!WeakMonoidHomomorphism o1 o2 R h}
(f : nat → A → M1) l :
l ≠ [] → R (h ([^o1 list] k↦x ∈ l, f k x)) ([^o2 list] k↦x ∈ l, h (f k x)).
Proof.
intros ?. revert f. induction l as [|x [|x' l'] IH]=> f //.
- by rewrite !big_opL_singleton.
- by rewrite !(big_opL_cons _ x) monoid_homomorphism IH.
Qed.
Lemma big_opM_commute `{Countable K} {A} (h : M1 → M2)
`{!MonoidHomomorphism o1 o2 R h} (f : K → A → M1) m :
R (h ([^o1 map] k↦x ∈ m, f k x)) ([^o2 map] k↦x ∈ m, h (f k x)).
Proof.
intros. induction m as [|i x m ? IH] using map_ind.
- by rewrite !big_opM_empty monoid_homomorphism_unit.
- by rewrite !big_opM_insert // monoid_homomorphism -IH.
Qed.
Lemma big_opM_commute1 `{Countable K} {A} (h : M1 → M2)
`{!WeakMonoidHomomorphism o1 o2 R h} (f : K → A → M1) m :
m ≠ ∅ → R (h ([^o1 map] k↦x ∈ m, f k x)) ([^o2 map] k↦x ∈ m, h (f k x)).
Proof.
intros. induction m as [|i x m ? IH] using map_ind; [done|].
destruct (decide (m = ∅)) as [->|].
- by rewrite !big_opM_insert // !big_opM_empty !right_id.
- by rewrite !big_opM_insert // monoid_homomorphism -IH //.
Qed.
Lemma big_opS_commute `{Countable A} (h : M1 → M2)
`{!MonoidHomomorphism o1 o2 R h} (f : A → M1) X :
R (h ([^o1 set] x ∈ X, f x)) ([^o2 set] x ∈ X, h (f x)).
- by rewrite !big_opS_empty monoid_homomorphism_unit.
- by rewrite !big_opS_insert // monoid_homomorphism -IH.
Qed.
Lemma big_opS_commute1 `{Countable A} (h : M1 → M2)
`{!WeakMonoidHomomorphism o1 o2 R h} (f : A → M1) X :
X ≠ ∅ → R (h ([^o1 set] x ∈ X, f x)) ([^o2 set] x ∈ X, h (f x)).
intros. induction X as [|x X ? IH] using set_ind_L; [done|].
destruct (decide (X = ∅)) as [->|].
- by rewrite !big_opS_insert // !big_opS_empty !right_id.
- by rewrite !big_opS_insert // monoid_homomorphism -IH //.
Qed.
Lemma big_opMS_commute `{Countable A} (h : M1 → M2)
`{!MonoidHomomorphism o1 o2 R h} (f : A → M1) X :
R (h ([^o1 mset] x ∈ X, f x)) ([^o2 mset] x ∈ X, h (f x)).
Proof.
intros. induction X as [|x X IH] using gmultiset_ind.
- by rewrite !big_opMS_empty monoid_homomorphism_unit.
- by rewrite !big_opMS_disj_union !big_opMS_singleton monoid_homomorphism -IH.
Qed.
Lemma big_opMS_commute1 `{Countable A} (h : M1 → M2)
`{!WeakMonoidHomomorphism o1 o2 R h} (f : A → M1) X :
X ≠ ∅ → R (h ([^o1 mset] x ∈ X, f x)) ([^o2 mset] x ∈ X, h (f x)).
Proof.
intros. induction X as [|x X IH] using gmultiset_ind; [done|].
destruct (decide (X = ∅)) as [->|].
- by rewrite !big_opMS_disj_union !big_opMS_singleton !big_opMS_empty !right_id.
- by rewrite !big_opMS_disj_union !big_opMS_singleton monoid_homomorphism -IH //.
Qed.
Context `{!LeibnizEquiv M2}.
Lemma big_opL_commute_L {A} (h : M1 → M2)
`{!MonoidHomomorphism o1 o2 (≡) h} (f : nat → A → M1) l :
h ([^o1 list] k↦x ∈ l, f k x) = ([^o2 list] k↦x ∈ l, h (f k x)).
Proof. unfold_leibniz. by apply big_opL_commute. Qed.
Lemma big_opL_commute1_L {A} (h : M1 → M2)
`{!WeakMonoidHomomorphism o1 o2 (≡) h} (f : nat → A → M1) l :
l ≠ [] → h ([^o1 list] k↦x ∈ l, f k x) = ([^o2 list] k↦x ∈ l, h (f k x)).
Proof. unfold_leibniz. by apply big_opL_commute1. Qed.
Lemma big_opM_commute_L `{Countable K} {A} (h : M1 → M2)
`{!MonoidHomomorphism o1 o2 (≡) h} (f : K → A → M1) m :
h ([^o1 map] k↦x ∈ m, f k x) = ([^o2 map] k↦x ∈ m, h (f k x)).
Proof. unfold_leibniz. by apply big_opM_commute. Qed.
Lemma big_opM_commute1_L `{Countable K} {A} (h : M1 → M2)
`{!WeakMonoidHomomorphism o1 o2 (≡) h} (f : K → A → M1) m :
m ≠ ∅ → h ([^o1 map] k↦x ∈ m, f k x) = ([^o2 map] k↦x ∈ m, h (f k x)).
Proof. unfold_leibniz. by apply big_opM_commute1. Qed.
Lemma big_opS_commute_L `{Countable A} (h : M1 → M2)
`{!MonoidHomomorphism o1 o2 (≡) h} (f : A → M1) X :
h ([^o1 set] x ∈ X, f x) = ([^o2 set] x ∈ X, h (f x)).
Proof. unfold_leibniz. by apply big_opS_commute. Qed.
Lemma big_opS_commute1_L `{ Countable A} (h : M1 → M2)
`{!WeakMonoidHomomorphism o1 o2 (≡) h} (f : A → M1) X :
X ≠ ∅ → h ([^o1 set] x ∈ X, f x) = ([^o2 set] x ∈ X, h (f x)).
Proof. intros. rewrite <-leibniz_equiv_iff. by apply big_opS_commute1. Qed.
Lemma big_opMS_commute_L `{Countable A} (h : M1 → M2)
`{!MonoidHomomorphism o1 o2 (≡) h} (f : A → M1) X :
h ([^o1 mset] x ∈ X, f x) = ([^o2 mset] x ∈ X, h (f x)).
Proof. unfold_leibniz. by apply big_opMS_commute. Qed.
Lemma big_opMS_commute1_L `{Countable A} (h : M1 → M2)
`{!WeakMonoidHomomorphism o1 o2 (≡) h} (f : A → M1) X :
X ≠ ∅ → h ([^o1 mset] x ∈ X, f x) = ([^o2 mset] x ∈ X, h (f x)).
Proof. intros. rewrite <-leibniz_equiv_iff. by apply big_opMS_commute1. Qed.
End homomorphisms.