Newer
Older
Require Export iris.excl.
Local Arguments valid _ _ !_ /.
Local Arguments validN _ _ _ !_ /.
Record auth (A : Type) : Type := Auth { authoritative : excl A ; own : A }.
Notation "◯ x" := (Auth ExclUnit x) (at level 20).
Notation "● x" := (Auth (Excl x) ∅) (at level 20).
Instance auth_equiv `{Equiv A} : Equiv (auth A) := λ x y,
authoritative x ≡ authoritative y ∧ own x ≡ own y.
Instance auth_dist `{Dist A} : Dist (auth A) := λ n x y,
authoritative x ={n}= authoritative y ∧ own x ={n}= own y.
Instance Auth_ne `{Dist A} : Proper (dist n ==> dist n ==> dist n) (@Auth A).
Proof. by split. Qed.
Instance authoritative_ne `{Dist A} :
Proper (dist n ==> dist n) (@authoritative A).
Proof. by destruct 1. Qed.
Instance own_ne `{Dist A} : Proper (dist n ==> dist n) (@own A).
Proof. by destruct 1. Qed.
Instance auth_compl `{Cofe A} : Compl (auth A) := λ c,
Auth (compl (chain_map authoritative c)) (compl (chain_map own c)).
Local Instance auth_cofe `{Cofe A} : Cofe (auth A).
Proof.
split.
* intros x y; unfold dist, auth_dist, equiv, auth_equiv.
rewrite !equiv_dist; naive_solver.
* intros n; split.
+ by intros ?; split.
+ by intros ?? [??]; split; symmetry.
+ intros ??? [??] [??]; split; etransitivity; eauto.
* by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
* by split.
* intros c n; split. apply (conv_compl (chain_map authoritative c) n).
apply (conv_compl (chain_map own c) n).
Qed.
Instance Auth_timeless `{Dist A, Equiv A} (x : excl A) (y : A) :
Timeless x → Timeless y → Timeless (Auth x y).
Proof. by intros ?? [??] [??]; split; apply (timeless _). Qed.
(* CMRA *)
Instance auth_empty `{Empty A} : Empty (auth A) := Auth ∅ ∅.
Instance auth_valid `{Equiv A, Valid A, Op A} : Valid (auth A) := λ x,
match authoritative x with
| Excl a => own x ≼ a ∧ ✓ a
| ExclUnit => ✓ (own x)
| ExclBot => False
end.
Arguments auth_valid _ _ _ _ !_ /.
Instance auth_validN `{Dist A, ValidN A, Op A} : ValidN (auth A) := λ n x,
match authoritative x with
| Excl a => own x ≼{n} a ∧ ✓{n} a
| ExclUnit => ✓{n} (own x)
| ExclBot => n = 0
end.
Arguments auth_validN _ _ _ _ _ !_ /.
Auth (unit (authoritative x)) (unit (own x)).
Auth (authoritative x ⋅ authoritative y) (own x ⋅ own y).
Instance auth_minus `{Minus A} : Minus (auth A) := λ x y,
Auth (authoritative x ⩪ authoritative y) (own x ⩪ own y).
Lemma auth_included `{Equiv A, Op A} (x y : auth A) :
x ≼ y ↔ authoritative x ≼ authoritative y ∧ own x ≼ own y.
Proof.
split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|].
intros [[z1 Hz1] [z2 Hz2]]; exists (Auth z1 z2); split; auto.
Qed.
Lemma auth_includedN `{Dist A, Op A} n (x y : auth A) :
x ≼{n} y ↔ authoritative x ≼{n} authoritative y ∧ own x ≼{n} own y.
Proof.
split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|].
intros [[z1 Hz1] [z2 Hz2]]; exists (Auth z1 z2); split; auto.
Qed.
Lemma authoritative_validN `{CMRA A} n (x : auth A) :
Lemma own_validN `{CMRA A} n (x : auth A) : ✓{n} x → ✓{n} (own x).
Proof. destruct x as [[]]; naive_solver eauto using cmra_valid_includedN. Qed.
Instance auth_cmra `{CMRA A} : CMRA (auth A).
* apply _.
* by intros n x y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy, ?Hy'.
* by intros n y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy, ?Hy'.
* intros n [x a] [y b] [Hx Ha]; simpl in *;
destruct Hx as [[][]| | |]; intros ?; cofe_subst; auto.
* by intros n x1 x2 [Hx Hx'] y1 y2 [Hy Hy'];
* by intros [[] ?]; simpl.
* intros n [[] ?] ?; naive_solver eauto using cmra_included_S, cmra_valid_S.
* destruct x as [[a| |] b]; simpl; rewrite ?cmra_included_includedN,
?cmra_valid_validN; [naive_solver|naive_solver|].
split; [done|intros Hn; discriminate (Hn 1)].
* by split; simpl; rewrite (associative _).
* by split; simpl; rewrite (commutative _).
* by split; simpl; rewrite ?(ra_unit_l _).
* by split; simpl; rewrite ?(ra_unit_idempotent _).
* intros n ??; rewrite! auth_includedN; intros [??].
by split; simpl; apply cmra_unit_preserving.
* assert (∀ n a b1 b2, b1 ⋅ b2 ≼{n} a → b1 ≼{n} a).
{ intros n a b1 b2 <-; apply cmra_included_l. }
intros n [[a1| |] b1] [[a2| |] b2];
naive_solver eauto using cmra_valid_op_l, cmra_valid_includedN.
* by intros n ??; rewrite auth_includedN;
intros [??]; split; simpl; apply cmra_op_minus.
Qed.
Instance auth_cmra_extend `{CMRA A, !CMRAExtend A} : CMRAExtend (auth A).
Proof.
intros n x y1 y2 ? [??]; simpl in *.
destruct (cmra_extend_op n (authoritative x) (authoritative y1)
(authoritative y2)) as (z1&?&?&?); auto using authoritative_validN.
destruct (cmra_extend_op n (own x) (own y1) (own y2))
as (z2&?&?&?); auto using own_validN.
by exists (Auth (z1.1) (z2.1), Auth (z1.2) (z2.2)).
Qed.
Instance auth_ra_empty `{CMRA A, Empty A, !RAEmpty A} : RAEmpty (auth A).
Proof.
split; [apply (ra_empty_valid (A:=A))|].
by intros x; constructor; simpl; rewrite (left_id _ _).
Qed.
Instance auth_frag_valid_timeless `{CMRA A} (x : A) :
ValidTimeless x → ValidTimeless (◯ x).
Proof. by intros ??; apply (valid_timeless x). Qed.
Instance auth_valid_timeless `{CMRA A, Empty A, !RAEmpty A} (x : A) :
ValidTimeless x → ValidTimeless (● x).
Proof.
by intros ? [??]; split; [apply ra_empty_least|apply (valid_timeless x)].
Qed.
Lemma auth_frag_op `{CMRA A} a b : ◯ (a ⋅ b) ≡ ◯ a ⋅ ◯ b.
Proof. done. Qed.
(* Functor *)
Definition authRA (A : cmraT) : cmraT := CMRAT (auth A).
Instance auth_fmap : FMap auth := λ A B f x,
Auth (f <$> authoritative x) (f (own x)).
Instance auth_fmap_cmra_ne `{Dist A, Dist B} n :
Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@fmap auth _ A B).
Proof.
intros f g Hf [??] [??] [??]; split; [by apply excl_fmap_cmra_ne|by apply Hf].
Qed.
Instance auth_fmap_cmra_monotone `{CMRA A, CMRA B} (f : A → B) :
(∀ n, Proper (dist n ==> dist n) f) → CMRAMonotone f →
CMRAMonotone (fmap f : auth A → auth B).
Proof.
split.
* by intros n [x a] [y b]; rewrite !auth_includedN; simpl;
intros [??]; split; apply includedN_preserving.
* intros n [[a| |] b];
naive_solver eauto using @includedN_preserving, @validN_preserving.
Qed.
Definition authRA_map {A B : cmraT} (f : A -n> B) : authRA A -n> authRA B :=
CofeMor (fmap f : authRA A → authRA B).
Lemma authRA_map_ne A B n : Proper (dist n ==> dist n) (@authRA_map A B).
Proof. intros f f' Hf [[a| |] b]; repeat constructor; apply Hf. Qed.