Skip to content
Snippets Groups Projects
csum.v 15.2 KiB
Newer Older
From iris.algebra Require Export cmra.
From iris.base_logic Require Import base_logic.
From iris.algebra Require Import local_updates.
Set Default Proof Using "Type".
Local Arguments pcore _ _ !_ /.
Local Arguments cmra_pcore _ !_ /.
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Local Arguments cmra_validN _ _ !_ /.
Local Arguments cmra_valid _  !_ /.

Inductive csum (A B : Type) :=
  | Cinl : A  csum A B
  | Cinr : B  csum A B
  | CsumBot : csum A B.
Arguments Cinl {_ _} _.
Arguments Cinr {_ _} _.
Arguments CsumBot {_ _}.

Instance: Params (@Cinl) 2.
Instance: Params (@Cinr) 2.
Instance: Params (@CsumBot) 2.

Robbert Krebbers's avatar
Robbert Krebbers committed
Instance maybe_Cinl {A B} : Maybe (@Cinl A B) := λ x,
  match x with Cinl a => Some a | _ => None end.
Instance maybe_Cinr {A B} : Maybe (@Cinr A B) := λ x,
  match x with Cinr b => Some b | _ => None end.

Section cofe.
Context {A B : ofeT}.
Implicit Types a : A.
Implicit Types b : B.

(* Cofe *)
Inductive csum_equiv : Equiv (csum A B) :=
  | Cinl_equiv a a' : a  a'  Cinl a  Cinl a'
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
  | Cinr_equiv b b' : b  b'  Cinr b  Cinr b'
  | CsumBot_equiv : CsumBot  CsumBot.
Existing Instance csum_equiv.
Inductive csum_dist : Dist (csum A B) :=
  | Cinl_dist n a a' : a {n} a'  Cinl a {n} Cinl a'
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
  | Cinr_dist n b b' : b {n} b'  Cinr b {n} Cinr b'
  | CsumBot_dist n : CsumBot {n} CsumBot.
Existing Instance csum_dist.

Global Instance Cinl_ne : NonExpansive (@Cinl A B).
Proof. by constructor. Qed.
Global Instance Cinl_proper : Proper (() ==> ()) (@Cinl A B).
Proof. by constructor. Qed.
Global Instance Cinl_inj : Inj () () (@Cinl A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinl_inj_dist n : Inj (dist n) (dist n) (@Cinl A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinr_ne : NonExpansive (@Cinr A B).
Proof. by constructor. Qed.
Global Instance Cinr_proper : Proper (() ==> ()) (@Cinr A B).
Proof. by constructor. Qed.
Global Instance Cinr_inj : Inj () () (@Cinr A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinr_inj_dist n : Inj (dist n) (dist n) (@Cinr A B).
Proof. by inversion_clear 1. Qed.

Definition csum_ofe_mixin : OfeMixin (csum A B).
Proof.
  split.
  - intros mx my; split.
    + by destruct 1; constructor; try apply equiv_dist.
    + intros Hxy; feed inversion (Hxy 0); subst; constructor; try done;
      apply equiv_dist=> n; by feed inversion (Hxy n).
  - intros n; split.
    + by intros [|a|]; constructor.
    + by destruct 1; constructor.
    + destruct 1; inversion_clear 1; constructor; etrans; eauto.
  - by inversion_clear 1; constructor; apply dist_S.
Qed.
Canonical Structure csumC : ofeT := OfeT (csum A B) csum_ofe_mixin.

Program Definition csum_chain_l (c : chain csumC) (a : A) : chain A :=
  {| chain_car n := match c n return _ with Cinl a' => a' | _ => a end |}.
Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
Program Definition csum_chain_r (c : chain csumC) (b : B) : chain B :=
  {| chain_car n := match c n return _ with Cinr b' => b' | _ => b end |}.
Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
Definition csum_compl `{Cofe A, Cofe B} : Compl csumC := λ c,
  match c 0 with
  | Cinl a => Cinl (compl (csum_chain_l c a))
  | Cinr b => Cinr (compl (csum_chain_r c b))
  | CsumBot => CsumBot
  end.
Global Program Instance csum_cofe `{Cofe A, Cofe B} : Cofe csumC :=
  {| compl := csum_compl |}.
Next Obligation.
  intros ?? n c; rewrite /compl /csum_compl.
  feed inversion (chain_cauchy c 0 n); first auto with lia; constructor.
  + rewrite (conv_compl n (csum_chain_l c a')) /=. destruct (c n); naive_solver.
  + rewrite (conv_compl n (csum_chain_r c b')) /=. destruct (c n); naive_solver.
Qed.

Global Instance csum_discrete : Discrete A  Discrete B  Discrete csumC.
Proof. by inversion_clear 3; constructor; apply (timeless _). Qed.
Global Instance csum_leibniz :
  LeibnizEquiv A  LeibnizEquiv B  LeibnizEquiv (csumC A B).
Proof. by destruct 3; f_equal; apply leibniz_equiv. Qed.

Global Instance Cinl_timeless a : Timeless a  Timeless (Cinl a).
Proof. by inversion_clear 2; constructor; apply (timeless _). Qed.
Global Instance Cinr_timeless b : Timeless b  Timeless (Cinr b).
Proof. by inversion_clear 2; constructor; apply (timeless _). Qed.
End cofe.

Arguments csumC : clear implicits.

(* Functor on COFEs *)
Definition csum_map {A A' B B'} (fA : A  A') (fB : B  B')
                    (x : csum A B) : csum A' B' :=
  match x with
  | Cinl a => Cinl (fA a)
  | Cinr b => Cinr (fB b)
  | CsumBot => CsumBot
  end.
Instance: Params (@csum_map) 4.

Lemma csum_map_id {A B} (x : csum A B) : csum_map id id x = x.
Proof. by destruct x. Qed.
Lemma csum_map_compose {A A' A'' B B' B''} (f : A  A') (f' : A'  A'')
                       (g : B  B') (g' : B'  B'') (x : csum A B) :
  csum_map (f'  f) (g'  g) x = csum_map f' g' (csum_map f g x).
Proof. by destruct x. Qed.
Lemma csum_map_ext {A A' B B' : ofeT} (f f' : A  A') (g g' : B  B') x :
  ( x, f x  f' x)  ( x, g x  g' x)  csum_map f g x  csum_map f' g' x.
Proof. by destruct x; constructor. Qed.
Instance csum_map_cmra_ne {A A' B B' : ofeT} n :
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==> dist n ==> dist n)
         (@csum_map A A' B B').
Proof. intros f f' Hf g g' Hg []; destruct 1; constructor; by apply Hf || apply Hg. Qed.
Definition csumC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  csumC A B -n> csumC A' B' :=
  CofeMor (csum_map f g).
Instance csumC_map_ne A A' B B' :
  NonExpansive2 (@csumC_map A A' B B').
Proof. by intros n f f' Hf g g' Hg []; constructor. Qed.

Section cmra.
Context {A B : cmraT}.
Implicit Types a : A.
Implicit Types b : B.

(* CMRA *)
Instance csum_valid : Valid (csum A B) := λ x,
  match x with
  | Cinl a =>  a
  | Cinr b =>  b
  | CsumBot => False
  end.
Instance csum_validN : ValidN (csum A B) := λ n x,
  match x with
  | Cinl a => {n} a
  | Cinr b => {n} b
  | CsumBot => False
  end.
Instance csum_pcore : PCore (csum A B) := λ x,
  match x with
  | Cinl a => Cinl <$> pcore a
  | Cinr b => Cinr <$> pcore b
  | CsumBot => Some CsumBot
  end.
Instance csum_op : Op (csum A B) := λ x y,
  match x, y with
  | Cinl a, Cinl a' => Cinl (a  a')
  | Cinr b, Cinr b' => Cinr (b  b')
  | _, _ => CsumBot
  end.

Lemma Cinl_op a a' : Cinl a  Cinl a' = Cinl (a  a').
Proof. done. Qed.
Lemma Cinr_op b b' : Cinr b  Cinr b' = Cinr (b  b').
Proof. done. Qed.

Lemma csum_included x y :
  x  y  y = CsumBot  ( a a', x = Cinl a  y = Cinl a'  a  a')
                       ( b b', x = Cinr b  y = Cinr b'  b  b').
Proof.
  split.
  - unfold included. intros [[a'|b'|] Hy]; destruct x as [a|b|];
      inversion_clear Hy; eauto 10.
  - intros [->|[(a&a'&->&->&c&?)|(b&b'&->&->&c&?)]].
    + destruct x; exists CsumBot; constructor.
    + exists (Cinl c); by constructor.
    + exists (Cinr c); by constructor.
Qed.

Lemma csum_includedN n x y :
  x {n} y  y = CsumBot  ( a a', x = Cinl a  y = Cinl a'  a {n} a')
                          ( b b', x = Cinr b  y = Cinr b'  b {n} b').
Proof.
  split.
  - unfold includedN. intros [[a'|b'|] Hy]; destruct x as [a|b|];
      inversion_clear Hy; eauto 10.
  - intros [->|[(a&a'&->&->&c&?)|(b&b'&->&->&c&?)]].
    + destruct x; exists CsumBot; constructor.
    + exists (Cinl c); by constructor.
    + exists (Cinr c); by constructor.
Qed.

Lemma csum_cmra_mixin : CMRAMixin (csum A B).
Proof.
  split.
  - intros [] n; destruct 1; constructor; by ofe_subst.
  - intros ???? [n a a' Ha|n b b' Hb|n] [=]; subst; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n a a' ca) as (ca'&->&?); auto.
      exists (Cinl ca'); by repeat constructor.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n b b' cb) as (cb'&->&?); auto.
      exists (Cinr cb'); by repeat constructor.
  - intros ? [a|b|] [a'|b'|] H; inversion_clear H; ofe_subst; done.
  - intros [a|b|]; rewrite /= ?cmra_valid_validN; naive_solver eauto using O.
  - intros n [a|b|]; simpl; auto using cmra_validN_S.
  - intros [a1|b1|] [a2|b2|] [a3|b3|]; constructor; by rewrite ?assoc.
  - intros [a1|b1|] [a2|b2|]; constructor; by rewrite 1?comm.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp a ca); repeat constructor; auto.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp b cb); repeat constructor; auto.
  - intros x y ? [->|[(a&a'&->&->&?)|(b&b'&->&->&?)]]%csum_included [=].
    + exists CsumBot. rewrite csum_included; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_mono a a' ca) as (ca'&->&?); auto.
      exists (Cinl ca'). rewrite csum_included; eauto 10.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_mono b b' cb) as (cb'&->&?); auto.
      exists (Cinr cb'). rewrite csum_included; eauto 10.
  - intros n [a1|b1|] [a2|b2|]; simpl; eauto using cmra_validN_op_l; done.
  - intros n [a|b|] y1 y2 Hx Hx'.
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; inversion_clear Hx'.
      destruct (cmra_extend n a a1 a2) as (z1&z2&?&?&?); auto.
      exists (Cinl z1), (Cinl z2). by repeat constructor.
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; inversion_clear Hx'.
      destruct (cmra_extend n b b1 b2) as (z1&z2&?&?&?); auto.
      exists (Cinr z1), (Cinr z2). by repeat constructor.
    + by exists CsumBot, CsumBot; destruct y1, y2; inversion_clear Hx'.
Canonical Structure csumR := CMRAT (csum A B) csum_cmra_mixin.

Global Instance csum_cmra_discrete :
  CMRADiscrete A  CMRADiscrete B  CMRADiscrete csumR.
Proof.
  split; first apply _.
  by move=>[a|b|] HH /=; try apply cmra_discrete_valid.
Qed.

Global Instance Cinl_persistent a : Persistent a  Persistent (Cinl a).
Proof. rewrite /Persistent /=. inversion_clear 1; by repeat constructor. Qed.
Global Instance Cinr_persistent b : Persistent b  Persistent (Cinr b).
Proof. rewrite /Persistent /=. inversion_clear 1; by repeat constructor. Qed.

Global Instance Cinl_exclusive a : Exclusive a  Exclusive (Cinl a).
Proof. by move=> H[]? =>[/H||]. Qed.
Global Instance Cinr_exclusive b : Exclusive b  Exclusive (Cinr b).
Proof. by move=> H[]? =>[|/H|]. Qed.
Global Instance Cinl_cancelable a : Cancelable a  Cancelable (Cinl a).
Proof.
  move=> ?? [y|y|] [z|z|] ? EQ //; inversion_clear EQ.
  constructor. by eapply (cancelableN a).
Qed.
Global Instance Cinr_cancelable b : Cancelable b  Cancelable (Cinr b).
Proof.
  move=> ?? [y|y|] [z|z|] ? EQ //; inversion_clear EQ.
  constructor. by eapply (cancelableN b).
Qed.

Global Instance Cinl_id_free a : IdFree a  IdFree (Cinl a).
Proof. intros ? [] ? EQ; inversion_clear EQ. by eapply id_free0_r. Qed.
Global Instance Cinr_id_free b : IdFree b  IdFree (Cinr b).
Proof. intros ? [] ? EQ; inversion_clear EQ. by eapply id_free0_r. Qed.

Global Instance Cinl_cmra_homomorphism : CMRAHomomorphism Cinl.
Proof. split. apply _. done. Qed.
Global Instance Cinr_cmra_homomorphism : CMRAHomomorphism Cinr.
Proof. split. apply _. done. Qed.

(** Internalized properties *)
Lemma csum_equivI {M} (x y : csum A B) :
  x  y ⊣⊢ (match x, y with
            | Cinl a, Cinl a' => a  a'
            | Cinr b, Cinr b' => b  b'
            | CsumBot, CsumBot => True
            | _, _ => False
            end : uPred M).
Proof.
  uPred.unseal; do 2 split; first by destruct 1.
  by destruct x, y; try destruct 1; try constructor.
Qed.
Lemma csum_validI {M} (x : csum A B) :
   x ⊣⊢ (match x with
          | Cinl a =>  a
          | Cinr b =>  b
          | CsumBot => False
          end : uPred M).
Proof. uPred.unseal. by destruct x. Qed.

(** Updates *)
Lemma csum_update_l (a1 a2 : A) : a1 ~~> a2  Cinl a1 ~~> Cinl a2.
Proof.
  intros Ha n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Ha n (Some a)).
  - by apply (Ha n None).
Qed.
Lemma csum_update_r (b1 b2 : B) : b1 ~~> b2  Cinr b1 ~~> Cinr b2.
Proof.
  intros Hb n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Hb n (Some b)).
  - by apply (Hb n None).
Qed.
Lemma csum_updateP_l (P : A  Prop) (Q : csum A B  Prop) a :
  a ~~>: P  ( a', P a'  Q (Cinl a'))  Cinl a ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some a')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP_r (P : B  Prop) (Q : csum A B  Prop) b :
  b ~~>: P  ( b', P b'  Q (Cinr b'))  Cinr b  ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some b')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP'_l (P : A  Prop) a :
  a ~~>: P  Cinl a ~~>: λ m',  a', m' = Cinl a'  P a'.
Proof. eauto using csum_updateP_l. Qed.
Lemma csum_updateP'_r (P : B  Prop) b :
  b ~~>: P  Cinr b ~~>: λ m',  b', m' = Cinr b'  P b'.
Proof. eauto using csum_updateP_r. Qed.

Lemma csum_local_update_l (a1 a2 a1' a2' : A) :
  (a1,a2) ~l~> (a1',a2')  (Cinl a1,Cinl a2) ~l~> (Cinl a1',Cinl a2').
  intros Hup n mf ? Ha1; simpl in *.
  destruct (Hup n (mf ≫= maybe Cinl)); auto.
  { by destruct mf as [[]|]; inversion_clear Ha1. }
  split. done. by destruct mf as [[]|]; inversion_clear Ha1; constructor.
Lemma csum_local_update_r (b1 b2 b1' b2' : B) :
  (b1,b2) ~l~> (b1',b2')  (Cinr b1,Cinr b2) ~l~> (Cinr b1',Cinr b2').
  intros Hup n mf ? Ha1; simpl in *.
  destruct (Hup n (mf ≫= maybe Cinr)); auto.
  { by destruct mf as [[]|]; inversion_clear Ha1. }
  split. done. by destruct mf as [[]|]; inversion_clear Ha1; constructor.
End cmra.

Arguments csumR : clear implicits.

(* Functor *)
Instance csum_map_cmra_monotone {A A' B B' : cmraT} (f : A  A') (g : B  B') :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (csum_map f g).
Proof.
  split; try apply _.
  - intros n [a|b|]; simpl; auto using cmra_monotone_validN.
  - intros x y; rewrite !csum_included.
    intros [->|[(a&a'&->&->&?)|(b&b'&->&->&?)]]; simpl;
    eauto 10 using cmra_monotone.
Qed.

Program Definition csumRF (Fa Fb : rFunctor) : rFunctor := {|
  rFunctor_car A B := csumR (rFunctor_car Fa A B) (rFunctor_car Fb A B);
  rFunctor_map A1 A2 B1 B2 fg := csumC_map (rFunctor_map Fa fg) (rFunctor_map Fb fg)
|}.
Next Obligation.
  by intros Fa Fb A1 A2 B1 B2 n f g Hfg; apply csumC_map_ne; try apply rFunctor_ne.
Qed.
Next Obligation.
  intros Fa Fb A B x. rewrite /= -{2}(csum_map_id x).
  apply csum_map_ext=>y; apply rFunctor_id.
Qed.
Next Obligation.
  intros Fa Fb A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -csum_map_compose.
  apply csum_map_ext=>y; apply rFunctor_compose.
Qed.

Instance csumRF_contractive Fa Fb :
  rFunctorContractive Fa  rFunctorContractive Fb 
  rFunctorContractive (csumRF Fa Fb).
Proof.
  by intros ?? A1 A2 B1 B2 n f g Hfg; apply csumC_map_ne; try apply rFunctor_contractive.
Qed.