Newer
Older
From iris.algebra Require Export excl.
From iris.algebra Require Import upred.
Local Arguments valid _ _ !_ /.
Record auth (A : Type) : Type := Auth { authoritative : excl A ; own : A }.
Add Printing Constructor auth.
Notation "◯ a" := (Auth ExclUnit a) (at level 20).
Notation "● a" := (Auth (Excl a) ∅) (at level 20).
Section cofe.
Context {A : cofeT}.
Implicit Types a : excl A.
Implicit Types b : A.
Instance auth_equiv : Equiv (auth A) := λ x y,
authoritative x ≡ authoritative y ∧ own x ≡ own y.
Instance auth_dist : Dist (auth A) := λ n x y,
authoritative x ≡{n}≡ authoritative y ∧ own x ≡{n}≡ own y.
Global Instance Auth_ne : Proper (dist n ==> dist n ==> dist n) (@Auth A).
Global Instance Auth_proper : Proper ((≡) ==> (≡) ==> (≡)) (@Auth A).
Proof. by split. Qed.
Global Instance authoritative_ne: Proper (dist n ==> dist n) (@authoritative A).
Global Instance authoritative_proper : Proper ((≡) ==> (≡)) (@authoritative A).
Proof. by destruct 1. Qed.
Global Instance own_ne : Proper (dist n ==> dist n) (@own A).
Global Instance own_proper : Proper ((≡) ==> (≡)) (@own A).
Proof. by destruct 1. Qed.
Instance auth_compl : Compl (auth A) := λ c,
Auth (compl (chain_map authoritative c)) (compl (chain_map own c)).
Definition auth_cofe_mixin : CofeMixin (auth A).
- intros x y; unfold dist, auth_dist, equiv, auth_equiv.
+ by intros ?; split.
+ by intros ?? [??]; split; symmetry.
+ intros ??? [??] [??]; split; etrans; eauto.
- by intros ? [??] [??] [??]; split; apply dist_S.
- intros n c; split. apply (conv_compl n (chain_map authoritative c)).
apply (conv_compl n (chain_map own c)).
Canonical Structure authC := CofeT auth_cofe_mixin.
Global Instance Auth_timeless a b :
Timeless a → Timeless b → Timeless (Auth a b).
Proof. by intros ?? [??] [??]; split; apply: timeless. Qed.
Global Instance auth_discrete : Discrete A → Discrete authC.
Proof. intros ? [??]; apply _. Qed.
Global Instance auth_leibniz : LeibnizEquiv A → LeibnizEquiv (auth A).
Proof. by intros ? [??] [??] [??]; f_equal/=; apply leibniz_equiv. Qed.
End cofe.
Arguments authC : clear implicits.
Section cmra.
Context {A : cmraT}.
Implicit Types a b : A.
Implicit Types x y : auth A.
Global Instance auth_empty `{Empty A} : Empty (auth A) := Auth ∅ ∅.
Instance auth_valid : Valid (auth A) := λ x,
match authoritative x with
| ExclUnit => ✓ own x
| ExclBot => False
end.
Global Arguments auth_valid !_ /.
Instance auth_validN : ValidN (auth A) := λ n x,
Global Arguments auth_validN _ !_ /.
Instance auth_core : Core (auth A) := λ x,
Auth (core (authoritative x)) (core (own x)).
Instance auth_op : Op (auth A) := λ x y,
Auth (authoritative x ⋅ authoritative y) (own x ⋅ own y).
Lemma auth_included (x y : auth A) :
x ≼ y ↔ authoritative x ≼ authoritative y ∧ own x ≼ own y.
Proof.
split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|].
intros [[z1 Hz1] [z2 Hz2]]; exists (Auth z1 z2); split; auto.
Qed.
Lemma authoritative_validN n (x : auth A) : ✓{n} x → ✓{n} authoritative x.
Lemma own_validN n (x : auth A) : ✓{n} x → ✓{n} own x.
Proof. destruct x as [[]]; naive_solver eauto using cmra_validN_includedN. Qed.
Definition auth_cmra_mixin : CMRAMixin (auth A).
- by intros n x y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'.
- by intros n y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'.
- intros n [x a] [y b] [Hx Ha]; simpl in *;
destruct Hx; intros ?; cofe_subst; auto.
- intros [[] ?]; rewrite /= ?cmra_included_includedN ?cmra_valid_validN;
naive_solver eauto using O.
- intros n [[] ?] ?; naive_solver eauto using cmra_includedN_S, cmra_validN_S.
- by split; simpl; rewrite assoc.
- by split; simpl; rewrite comm.
- by split; simpl; rewrite ?cmra_core_l.
- by split; simpl; rewrite ?cmra_core_idemp.
- intros ??; rewrite! auth_included; intros [??].
- assert (∀ n (a b1 b2 : A), b1 ⋅ b2 ≼{n} a → b1 ≼{n} a).
{ intros n a b1 b2 <-; apply cmra_includedN_l. }
naive_solver eauto using cmra_validN_op_l, cmra_validN_includedN.
- intros n x y1 y2 ? [??]; simpl in *.
destruct (cmra_extend n (authoritative x) (authoritative y1)
(authoritative y2)) as (ea&?&?&?); auto using authoritative_validN.
destruct (cmra_extend n (own x) (own y1) (own y2))
as (b&?&?&?); auto using own_validN.
by exists (Auth (ea.1) (b.1), Auth (ea.2) (b.2)).
Canonical Structure authR : cmraT := CMRAT auth_cofe_mixin auth_cmra_mixin.
Global Instance auth_cmra_discrete : CMRADiscrete A → CMRADiscrete authR.
Proof.
split; first apply _.
intros [[] ?]; rewrite /= /cmra_valid /cmra_validN /=
-?cmra_discrete_included_iff -?cmra_discrete_valid_iff; auto.
Admitted.
(** Internalized properties *)
Lemma auth_equivI {M} (x y : auth A) :
(x ≡ y) ⊣⊢ (authoritative x ≡ authoritative y ∧ own x ≡ own y : uPred M).
Lemma auth_validI {M} (x : auth A) :
(✓ x) ⊣⊢ (match authoritative x with
| Excl a => (∃ b, a ≡ own x ⋅ b) ∧ ✓ a
| ExclUnit => ✓ own x
| ExclBot => False
Proof. uPred.unseal. by destruct x as [[]]. Qed.
(** The notations ◯ and ● only work for CMRAs with an empty element. So, in
what follows, we assume we have an empty element. *)
Global Instance auth_cmra_unit : CMRAUnit authR.
- by intros x; constructor; rewrite /= left_id.
- apply _.
Lemma auth_frag_op a b : ◯ (a ⋅ b) ≡ ◯ a ⋅ ◯ b.
Lemma auth_both_op a b : Auth (Excl a) b ≡ ● a ⋅ ◯ b.
Proof. by rewrite /op /auth_op /= left_id. Qed.
(∀ n af, ✓{n} a → a ≡{n}≡ a' ⋅ af → b ≡{n}≡ b' ⋅ af ∧ ✓{n} b) →
move=> Hab n [[?| |] bf1] // =>-[[bf2 Ha] ?]; do 2 red; simpl in *.
destruct (Hab n (bf1 ⋅ bf2)) as [Ha' ?]; auto.
{ by rewrite Ha left_id assoc. }
split; [by rewrite Ha' left_id assoc; apply cmra_includedN_l|done].
Lemma auth_local_update L `{!LocalUpdate Lv L} a a' :
● a' ⋅ ◯ a ~~> ● L a' ⋅ ◯ L a.
intros. apply auth_update=>n af ? EQ; split; last by apply cmra_valid_validN.
by rewrite EQ (local_updateN L) // -EQ.
Lemma auth_update_op_l a a' b :
✓ (b ⋅ a) → ● a ⋅ ◯ a' ~~> ● (b ⋅ a) ⋅ ◯ (b ⋅ a').
Proof. by intros; apply (auth_local_update _). Qed.
✓ (a ⋅ b) → ● a ⋅ ◯ a' ~~> ● (a ⋅ b) ⋅ ◯ (a' ⋅ b).
Proof. rewrite -!(comm _ b); apply auth_update_op_l. Qed.

Ralf Jung
committed
The trouble is that given ✓ (L a ⋅ a'), Lv a
we need ✓ (a ⋅ a'). I think this should hold for every local update,
but adding an extra axiom to local updates just for this is silly. *)
Lemma auth_local_update_l L `{!LocalUpdate Lv L} a a' :
Lv a → ✓ (L a ⋅ a') →
● (a ⋅ a') ⋅ ◯ a ~~> ● (L a ⋅ a') ⋅ ◯ L a.
intros. apply auth_update=>n af ? EQ; split; last by apply cmra_valid_validN.
by rewrite -(local_updateN L) // EQ -(local_updateN L) // -EQ.
Arguments authR : clear implicits.
Definition auth_map {A B} (f : A → B) (x : auth A) : auth B :=
Auth (excl_map f (authoritative x)) (f (own x)).
Lemma auth_map_id {A} (x : auth A) : auth_map id x = x.
Proof. by destruct x; rewrite /auth_map excl_map_id. Qed.
Lemma auth_map_compose {A B C} (f : A → B) (g : B → C) (x : auth A) :
auth_map (g ∘ f) x = auth_map g (auth_map f x).
Proof. by destruct x; rewrite /auth_map excl_map_compose. Qed.
Lemma auth_map_ext {A B : cofeT} (f g : A → B) x :
(∀ x, f x ≡ g x) → auth_map f x ≡ auth_map g x.
Proof. constructor; simpl; auto using excl_map_ext. Qed.
Instance auth_map_cmra_ne {A B : cofeT} n :
Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@auth_map A B).
intros f g Hf [??] [??] [??]; split; [by apply excl_map_cmra_ne|by apply Hf].
Instance auth_map_cmra_monotone {A B : cmraT} (f : A → B) :
CMRAMonotone f → CMRAMonotone (auth_map f).
split; try apply _.
- intros n [[a| |] b]; rewrite /= /cmra_validN /=; try
naive_solver eauto using includedN_preserving, validN_preserving.
- by intros [x a] [y b]; rewrite !auth_included /=;
intros [??]; split; simpl; apply: included_preserving.
Definition authC_map {A B} (f : A -n> B) : authC A -n> authC B :=
CofeMor (auth_map f).
Lemma authC_map_ne A B n : Proper (dist n ==> dist n) (@authC_map A B).
Proof. intros f f' Hf [[a| |] b]; repeat constructor; apply Hf. Qed.
Program Definition authRF (F : rFunctor) : rFunctor := {|
rFunctor_car A B := authR (rFunctor_car F A B);
rFunctor_map A1 A2 B1 B2 fg := authC_map (rFunctor_map F fg)
Next Obligation.
by intros F A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, rFunctor_ne.
Qed.
intros F A B x. rewrite /= -{2}(auth_map_id x).
apply auth_map_ext=>y; apply rFunctor_id.
intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -auth_map_compose.
apply auth_map_ext=>y; apply rFunctor_compose.