Skip to content
Snippets Groups Projects
Commit 1e05b260 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Merge branch 'robbert/twp_wp_step_lb' into 'master'

Add lemmas for creating later credits for non-pure steps (alternative)

See merge request iris/iris!1036
parents 9c192c8d e33df12a
No related branches found
No related tags found
No related merge requests found
......@@ -106,8 +106,12 @@ lemma.
**Changes in `heap_lang`:**
* Replace `wp_lb_init` with a more general `steps_lb_0` lemma for creating a `steps_lb`
without depending on WP. (by Thomas Somers)
* Replace `wp_lb_init` with a more general `steps_lb_0` lemma for creating a
`steps_lb` without depending on WP. (by Thomas Somers)
* Add generic lemma `twp_wp_step_lc` to derive WP with later credits from TWP.
* Add Texan triples with later credits for stateful operations: `wp_alloc_lc`,
`wp_alloc_lc`, `wp_free_lc`, `wp_load_lc`, `wp_store_lc`, `wp_xchg_lc`,
`wp_cmpxchg_fail_lc`, `wp_cmpxchg_suc_lc`, and `wp_faa_lc`.
The following `sed` script helps adjust your code to the renaming (on macOS,
replace `sed` by `gsed`, installed via e.g. `brew install gnu-sed`).
......
......@@ -191,7 +191,8 @@ Proof.
iModIntro; iSplit.
{ destruct s; eauto using reducible_no_obs_fill_inv. }
iIntros (κ e2 σ2 efs Hstep).
iMod ("IH" $! κ (K e2) σ2 efs with "[]") as (?) "(Hσ & IH & IHefs)"; eauto using fill_step.
iMod ("IH" $! κ (K e2) σ2 efs with "[]")
as (?) "(Hσ & IH & IHefs)"; eauto using fill_step.
iModIntro. iFrame "Hσ". iSplit; first done. iSplitR "IHefs".
- iDestruct "IH" as "[IH _]". by iApply "IH".
- by setoid_rewrite and_elim_r.
......@@ -213,6 +214,43 @@ Proof.
iIntros "!>" (k ef _) "H". by iApply "IH".
Qed.
(** This lemma is similar to [wp_step_fupdN_strong], the difference is the TWP
(instead of a WP) in the premise. Since TWPs do not use up later credits, we get
[£ n] in the viewshift in the premise. *)
Lemma twp_wp_fupdN_strong n s E1 E2 e P Φ :
TCEq (to_val e) None E2 E1
( σ ns κs nt, state_interp σ ns κs nt ={E1,}=∗
n S (num_laters_per_step ns))
((|={E1,E2}=> £ n ={}▷=∗^n |={E2,E1}=> P)
WP e @ s; E2 [{ v, P ={E1}=∗ Φ v }]) -∗
WP e @ s; E1 {{ Φ }}.
Proof.
destruct n as [|n].
{ iIntros (_ ?) "/= [_ [HP Hwp]]".
iApply (wp_strong_mono with "[Hwp]"); [done..|by iApply twp_wp|]; simpl.
iIntros (v) "H". iApply ("H" with "[>HP]"). iMod "HP".
iMod lc_zero as "Hlc". by iApply "HP". }
rewrite wp_unfold twp_unfold /wp_pre /twp_pre. iIntros (-> ?) "H".
iIntros (σ1 ns κ κs nt) "Hσ".
destruct (decide (n num_laters_per_step ns)) as [Hn|Hn]; first last.
{ iDestruct "H" as "[Hn _]". iMod ("Hn" with "Hσ") as %?. lia. }
iDestruct "H" as "[_ [>HP Hwp]]". iMod ("Hwp" with "[$]") as "[% H]".
iIntros "!>". iSplitR.
{ destruct s; eauto using reducible_no_obs_reducible. }
iIntros (e2 σ2 efs Hstep) "Hcred /=".
iDestruct ("H" $! κ e2 σ2 efs with "[% //]") as "H".
iMod ("HP" with "[Hcred]") as "HP".
{ iApply (lc_weaken with "Hcred"); lia. }
iIntros "!> !>". iMod "HP". iModIntro.
iApply step_fupdN_le; [apply Hn|done|..].
iApply (step_fupdN_wand with "HP"); iIntros "HP".
iMod "H" as (->) "($ & Hwp & Hfork)". iMod "HP". iModIntro. iSplitR "Hfork".
- iApply twp_wp. iApply (twp_strong_mono with "Hwp"); [done|set_solver|].
iIntros (v) "HΦ". iApply ("HΦ" with "HP").
- iApply (big_sepL_impl with "Hfork").
iIntros "!>" (k ef _) "H". by iApply twp_wp.
Qed.
(** * Derived rules *)
Lemma twp_mono s E e Φ Ψ :
( v, Φ v Ψ v) WP e @ s; E [{ Φ }] WP e @ s; E [{ Ψ }].
......
(** This file extends the HeapLang program logic with some derived laws (not
using the lifting lemmas) about arrays and prophecies.
We collect both the total WP [twp_X] and partial WP [wp_X] versions of the laws.
The versions with later credits [wp_X_lc] are omitted because they are too
specific and can simply be derived using [twp_wp_step_lc] when needed.
For utility functions on arrays (e.g., freeing/copying an array), see
[heap_lang.lib.array]. *)
[heap_lang.lib.array]. *)
From stdpp Require Import fin_maps.
From iris.bi Require Import lib.fractional.
......
......@@ -135,6 +135,44 @@ Proof.
iApply (wp_wand with "Hwp"). iIntros (v) "HΦ". by iApply "HΦ".
Qed.
(** A stronger version of [twp_wp_step] to turn a TWP into a WP. Provided
[steps_lb n], this version gives us [S n] laters ([twp_wp_step] gives just one)
and [S n] later credits ([twp_wp_step] gives none). *)
Lemma twp_wp_step_lc s n E e P Φ :
TCEq (to_val e) None
steps_lb n -∗
▷^(S n) P -∗
WP e @ s; E [{ v, P -∗ £ (S n) ={E}=∗ Φ v }] -∗
WP e @ s; E {{ Φ }}.
Proof.
iIntros (?) "#Hlb HP Hwp".
iApply (twp_wp_fupdN_strong (S n) _ _ _ _ (P £ (S n))); [done|]. iSplit.
- iIntros (σ ns κ m) "(Hσ & Hκ & Hsteps)".
iDestruct (steps_lb_valid with "[$] [$]") as %?.
iApply fupd_mask_intro_discard; [set_solver|].
iPureIntro. rewrite /num_laters_per_step /=. lia.
- iSplitL "HP".
+ iIntros "!> ?". iApply step_fupdN_intro; [done|].
iIntros "!> !>". by iFrame.
+ iApply (twp_wand with "Hwp").
iIntros (v) "H [??]". by iApply ("H" with "[$]").
Qed.
(** A version of [twp_wp_step_lc] that provides only a single later modality
(but still [S n] later credits). This version is tailored to lift total Texan
triples to a partial Texan triples with later credits, see e.g., [wp_alloc_lc]
below. *)
Lemma twp_wp_step_lc_texan s n E e P Φ :
TCEq (to_val e) None
steps_lb n -∗
P -∗
WP e @ s; E [{ v, P -∗ £ (S n) ={E}=∗ Φ v }] -∗
WP e @ s; E {{ Φ }}.
Proof.
iIntros (?) "#Hlb HP Hwp".
iApply (twp_wp_step_lc with "[$] [HP] Hwp"); auto.
Qed.
Lemma wp_step_fupdN_lb s n E1 E2 e P Φ :
TCEq (to_val e) None
E2 E1
......@@ -272,7 +310,7 @@ Qed.
Lemma inv_pointsto_acc l I E :
inv_heapN E
inv_heap_inv -∗ l ↦_I ={E, E inv_heapN}=∗
v, I v l v (l v ={E inv_heapN, E}=∗ True).
v, I v l v (l v ={E inv_heapN, E}=∗ True).
Proof.
iIntros (?) "#Hinv Hl".
iMod (inv_pointsto_acc with "Hinv Hl") as ([v|]) "(% & Hl & Hclose)"; [done| |done].
......@@ -320,7 +358,8 @@ Lemma twp_allocN_seq s E v n :
(l + (i : nat)) v meta_token (l + (i : nat)) }]].
Proof.
iIntros (Hn Φ) "_ HΦ". iApply twp_lift_atomic_base_step_no_fork; first done.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>"; iSplit; first by destruct n; auto with lia base_step.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>".
iSplit; first by destruct n; auto with lia base_step.
iIntros (κ v2 σ2 efs Hstep); inv_base_step.
iMod (gen_heap_alloc_big _ (heap_array _ (replicate (Z.to_nat n) v)) with "Hσ")
as "(Hσ & Hl & Hm)".
......@@ -341,26 +380,50 @@ Proof.
iIntros (Hn Φ) "_ HΦ". iApply (twp_wp_step with "HΦ").
iApply twp_allocN_seq; [by auto..|]; iIntros (l) "H HΦ". by iApply "HΦ".
Qed.
Lemma wp_allocN_seq_lc s E v n n' :
(0 < n)%Z
{{{ steps_lb n' }}} AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E
{{{ l, RET LitV (LitLoc l); ([ list] i seq 0 (Z.to_nat n),
(l + (i : nat)) v meta_token (l + (i : nat)) ) £ (S n') }}}.
Proof.
iIntros (Hn Φ) "#? HΦ". iApply (twp_wp_step_lc_texan with "[$] HΦ").
iApply twp_allocN_seq; [by auto..|]; iIntros (l) "H HΦ ? !>".
iApply "HΦ"; iFrame.
Qed.
Lemma twp_alloc s E v :
[[{ True }]] Alloc (Val v) @ s; E [[{ l, RET LitV (LitLoc l); l v meta_token l }]].
[[{ True }]]
Alloc (Val v) @ s; E
[[{ l, RET LitV (LitLoc l); l v meta_token l }]].
Proof.
iIntros (Φ) "_ HΦ". iApply twp_allocN_seq; [auto with lia..|].
iIntros (l) "/= (? & _)". rewrite Loc.add_0. iApply "HΦ"; iFrame.
Qed.
Lemma wp_alloc s E v :
{{{ True }}} Alloc (Val v) @ s; E {{{ l, RET LitV (LitLoc l); l v meta_token l }}}.
{{{ True }}}
Alloc (Val v) @ s; E
{{{ l, RET LitV (LitLoc l); l v meta_token l }}}.
Proof.
iIntros (Φ) "_ HΦ". iApply (twp_wp_step with "HΦ").
iApply twp_alloc; [by auto..|]; iIntros (l) "H HΦ". by iApply "HΦ".
Qed.
Lemma wp_alloc_lc s E v n :
{{{ steps_lb n }}}
Alloc (Val v) @ s; E
{{{ l, RET LitV (LitLoc l); l v meta_token l £ (S n) }}}.
Proof.
iIntros (Φ) "#? HΦ". iApply (twp_wp_step_lc_texan with "[$] HΦ").
iApply twp_alloc; [by auto..|]; iIntros (l) "[??] HΦ ? !>".
iApply "HΦ"; iFrame.
Qed.
Lemma twp_free s E l v :
[[{ l v }]] Free (Val $ LitV $ LitLoc l) @ s; E
[[{ RET LitV LitUnit; True }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_base_step_no_fork; first done.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>".
iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with base_step.
iIntros (κ v2 σ2 efs Hstep); inv_base_step.
iMod (gen_heap_update with "Hσ Hl") as "[$ Hl]".
......@@ -374,12 +437,20 @@ Proof.
iIntros (Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_free with "H"); [by auto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma wp_free_lc s E l v n :
{{{ steps_lb n l v }}} Free (Val $ LitV (LitLoc l)) @ s; E
{{{ RET LitV LitUnit; £ (S n) }}}.
Proof.
iIntros (Φ) "[#? >H] HΦ". iApply (twp_wp_step_lc_texan with "[$] HΦ").
iApply (twp_free with "H"); [by auto..|]; iIntros "H HΦ ? !>". by iApply "HΦ".
Qed.
Lemma twp_load s E l dq v :
[[{ l {dq} v }]] Load (Val $ LitV $ LitLoc l) @ s; E [[{ RET v; l {dq} v }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_base_step_no_fork; first done.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>".
iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with base_step.
iIntros (κ v2 σ2 efs Hstep); inv_base_step.
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
......@@ -392,13 +463,22 @@ Proof.
iIntros (Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_load with "H"). iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma wp_load_lc s E l dq v n :
{{{ steps_lb n l {dq} v }}}
Load (Val $ LitV $ LitLoc l) @ s; E
{{{ RET v; l {dq} v £ (S n) }}}.
Proof.
iIntros (Φ) "[#? >H] HΦ". iApply (twp_wp_step_lc_texan with "[$] HΦ").
iApply (twp_load with "H"). iIntros "H HΦ ? !>". iApply "HΦ"; iFrame.
Qed.
Lemma twp_store s E l v' v :
[[{ l v' }]] Store (Val $ LitV $ LitLoc l) (Val v) @ s; E
[[{ RET LitV LitUnit; l v }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_base_step_no_fork; first done.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>".
iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with base_step.
iIntros (κ v2 σ2 efs Hstep); inv_base_step.
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
......@@ -412,13 +492,22 @@ Proof.
iIntros (Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_store with "H"); [by auto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma wp_store_lc s E l v' v n :
{{{ steps_lb n l v' }}} Store (Val $ LitV (LitLoc l)) (Val v) @ s; E
{{{ RET LitV LitUnit; l v £ (S n) }}}.
Proof.
iIntros (Φ) "[#? >H] HΦ". iApply (twp_wp_step_lc_texan with "[$] HΦ").
iApply (twp_store with "H"); [by auto..|]; iIntros "H HΦ ? !>".
iApply "HΦ"; iFrame.
Qed.
Lemma twp_xchg s E l v' v :
[[{ l v' }]] Xchg (Val $ LitV $ LitLoc l) (Val v) @ s; E
[[{ RET v'; l v }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_base_step_no_fork; first done.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>".
iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with base_step.
iIntros (κ v2 σ2 efs Hstep); inv_base_step.
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
......@@ -432,6 +521,14 @@ Proof.
iIntros (Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_xchg with "H"); [by auto..|]. iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma wp_xchg_lc s E l v' v n :
{{{ steps_lb n l v' }}} Xchg (Val $ LitV (LitLoc l)) (Val v) @ s; E
{{{ RET v'; l v £ (S n) }}}.
Proof.
iIntros (Φ) "[#? >H] HΦ". iApply (twp_wp_step_lc_texan with "[$] HΦ").
iApply (twp_xchg with "H"); [by auto..|]. iIntros "H HΦ ? !>".
iApply "HΦ"; iFrame.
Qed.
Lemma twp_cmpxchg_fail s E l dq v' v1 v2 :
v' v1 vals_compare_safe v' v1
......@@ -439,7 +536,8 @@ Lemma twp_cmpxchg_fail s E l dq v' v1 v2 :
[[{ RET PairV v' (LitV $ LitBool false); l {dq} v' }]].
Proof.
iIntros (?? Φ) "Hl HΦ". iApply twp_lift_atomic_base_step_no_fork; first done.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>".
iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with base_step.
iIntros (κ v2' σ2 efs Hstep); inv_base_step.
rewrite bool_decide_false //.
......@@ -454,6 +552,16 @@ Proof.
iIntros (?? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_cmpxchg_fail with "H"); [by auto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma wp_cmpxchg_fail_lc s E l dq v' v1 v2 n :
v' v1 vals_compare_safe v' v1
{{{ steps_lb n l {dq} v' }}}
CmpXchg (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
{{{ RET PairV v' (LitV $ LitBool false); l {dq} v' £ (S n) }}}.
Proof.
iIntros (?? Φ) "[#? >H] HΦ". iApply (twp_wp_step_lc_texan with "[$] HΦ").
iApply (twp_cmpxchg_fail with "H"); [by auto..|]; iIntros "H HΦ ? !>".
iApply "HΦ"; iFrame.
Qed.
Lemma twp_cmpxchg_suc s E l v1 v2 v' :
v' = v1 vals_compare_safe v' v1
......@@ -461,7 +569,8 @@ Lemma twp_cmpxchg_suc s E l v1 v2 v' :
[[{ RET PairV v' (LitV $ LitBool true); l v2 }]].
Proof.
iIntros (?? Φ) "Hl HΦ". iApply twp_lift_atomic_base_step_no_fork; first done.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>".
iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with base_step.
iIntros (κ v2' σ2 efs Hstep); inv_base_step.
rewrite bool_decide_true //.
......@@ -477,13 +586,25 @@ Proof.
iIntros (?? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_cmpxchg_suc with "H"); [by auto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma wp_cmpxchg_suc_lc s E l v1 v2 v' n :
v' = v1 vals_compare_safe v' v1
{{{ steps_lb n l v' }}}
CmpXchg (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
{{{ RET PairV v' (LitV $ LitBool true); l v2 £ (S n) }}}.
Proof.
iIntros (?? Φ) "[#? >H] HΦ". iApply (twp_wp_step_lc_texan with "[$] HΦ").
iApply (twp_cmpxchg_suc with "H"); [by auto..|]; iIntros "H HΦ ? !>".
iApply "HΦ"; iFrame.
Qed.
Lemma twp_faa s E l i1 i2 :
[[{ l LitV (LitInt i1) }]] FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E
[[{ l LitV (LitInt i1) }]]
FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E
[[{ RET LitV (LitInt i1); l LitV (LitInt (i1 + i2)) }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_base_step_no_fork; first done.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(Hσ & Hκs & Hsteps) !>".
iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with base_step.
iIntros (κ e2 σ2 efs Hstep); inv_base_step.
iMod (gen_heap_update with "Hσ Hl") as "[$ Hl]".
......@@ -491,12 +612,22 @@ Proof.
iModIntro. do 2 (iSplit; first done). iFrame. by iApply "HΦ".
Qed.
Lemma wp_faa s E l i1 i2 :
{{{ l LitV (LitInt i1) }}} FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E
{{{ l LitV (LitInt i1) }}}
FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E
{{{ RET LitV (LitInt i1); l LitV (LitInt (i1 + i2)) }}}.
Proof.
iIntros (Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_faa with "H"); [by auto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma wp_faa_lc s E l i1 i2 n :
{{{ steps_lb n l LitV (LitInt i1) }}}
FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E
{{{ RET LitV (LitInt i1); l LitV (LitInt (i1 + i2)) £ (S n) }}}.
Proof.
iIntros (Φ) "[#? >H] HΦ". iApply (twp_wp_step_lc_texan with "[$] HΦ").
iApply (twp_faa with "H"); [by auto..|]; iIntros "H HΦ ? !>".
iApply "HΦ"; iFrame.
Qed.
Lemma wp_new_proph s E :
{{{ True }}}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment