Skip to content
Snippets Groups Projects
Commit 790f7f33 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Move header to the right place.

parent 9cdd69a9
No related branches found
No related tags found
No related merge requests found
......@@ -319,9 +319,10 @@ Proof.
- by rewrite IH.
Qed.
(** ** Big ops over two lists *)
Lemma big_sepL2_alt {A B} (Φ : nat A B PROP) l1 l2 :
([ list] ky1;y2 l1; l2, Φ k y1 y2)
⊣⊢ length l1 = length l2 [ list] k y zip l1 l2, Φ k (y.1) (y.2).
([ list] ky1;y2 l1; l2, Φ k y1 y2) ⊣⊢
length l1 = length l2 [ list] k xy zip l1 l2, Φ k (xy.1) (xy.2).
Proof.
apply (anti_symm _).
- apply and_intro.
......@@ -335,7 +336,6 @@ Proof.
induction Hl as [|x1 l1 x2 l2 _ _ IH]=> Φ //=. by rewrite -IH.
Qed.
(** ** Big ops over two lists *)
Section sep_list2.
Context {A B : Type}.
Implicit Types Φ Ψ : nat A B PROP.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment