\All m, \melt'. & m \leq n \land (\melt\mtimes\melt') \in\mval_m \Ra{}\\&\Exists\meltB. (\meltB\mtimes\melt') \in\mval_m \land m \in\Sem{\vctx\proves\prop :\Prop}_\gamma(\meltB)
\end{aligned}
...
...
@@ -73,7 +73,7 @@ For every definition, we have to show all the side-conditions: The maps have to
\Sem{\vctx\proves x : \type}_\gamma&\eqdef\gamma(x) \\