Skip to content
Snippets Groups Projects
Commit 925a9169 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Backwards compatibility layer for ownP.

parent b0039d65
No related branches found
No related tags found
No related merge requests found
......@@ -93,6 +93,7 @@ program_logic/ectx_language.v
program_logic/ectxi_language.v
program_logic/ectx_lifting.v
program_logic/gen_heap.v
program_logic/ownp.v
heap_lang/lang.v
heap_lang/tactics.v
heap_lang/wp_tactics.v
......
......@@ -165,7 +165,7 @@ Proof.
Qed.
End adequacy.
Theorem wp_adequacy Σ Λ `{invPreG Σ} (e : expr Λ) σ φ :
Theorem wp_adequacy Σ Λ `{invPreG Σ} e σ φ :
( `{Hinv : invG Σ},
True ={}=∗ stateI : state Λ iProp Σ,
let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in
......@@ -189,7 +189,7 @@ Proof.
iFrame. by iApply big_sepL_nil.
Qed.
Theorem wp_invariance {Λ} `{invPreG Σ} e σ1 t2 σ2 φ Φ :
Theorem wp_invariance Σ Λ `{invPreG Σ} e σ1 t2 σ2 φ Φ :
( `{Hinv : invG Σ},
True ={}=∗ stateI : state Λ iProp Σ,
let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in
......
From iris.program_logic Require Export weakestpre.
From iris.program_logic Require Import lifting adequacy.
From iris.program_logic Require ectx_language.
From iris.algebra Require Import auth.
From iris.proofmode Require Import tactics classes.
Class ownPG' (Λstate : Type) (Σ : gFunctors) := OwnPG {
ownP_invG : invG Σ;
ownP_inG :> inG Σ (authR (optionUR (exclR (leibnizC Λstate))));
ownP_name : gname;
}.
Notation ownPG Λ Σ := (ownPG' (state Λ) Σ).
Instance ownPG_irisG `{ownPG' Λstate Σ} : irisG' Λstate Σ := {
iris_invG := ownP_invG;
state_interp σ := own ownP_name ( (Excl' (σ:leibnizC Λstate)))
}.
Definition ownPΣ (Λstate : Type) : gFunctors :=
#[invΣ;
GFunctor (constRF (authUR (optionUR (exclR (leibnizC Λstate)))))].
Class ownPPreG' (Λstate : Type) (Σ : gFunctors) : Set := IrisPreG {
ownPPre_invG :> invPreG Σ;
ownPPre_inG :> inG Σ (authR (optionUR (exclR (leibnizC Λstate))))
}.
Notation ownPPreG Λ Σ := (ownPPreG' (state Λ) Σ).
Instance subG_ownPΣ {Λstate Σ} : subG (ownPΣ Λstate) Σ ownPPreG' Λstate Σ.
Proof. intros [??%subG_inG]%subG_inv; constructor; apply _. Qed.
(** Ownership *)
Definition ownP `{ownPG' Λstate Σ} (σ : Λstate) : iProp Σ :=
own ownP_name ( (Excl' σ)).
Typeclasses Opaque ownP.
Instance: Params (@ownP) 3.
(* Adequacy *)
Theorem ownP_adequacy Σ `{ownPPreG Λ Σ} e σ φ :
( `{ownPG Λ Σ}, ownP σ WP e {{ v, φ v }})
adequate e σ φ.
Proof.
intros Hwp. apply (wp_adequacy Σ _).
iIntros (?) "". iMod (own_alloc ( (Excl' (σ : leibnizC _)) (Excl' σ)))
as (γσ) "[Hσ Hσf]"; first done.
iModIntro. iExists (λ σ, own γσ ( (Excl' (σ:leibnizC _)))). iFrame "Hσ".
iApply (Hwp (OwnPG _ _ _ _ γσ)). by rewrite /ownP.
Qed.
Theorem ownP_invariance Σ `{ownPPreG Λ Σ} e σ1 t2 σ2 φ Φ :
( `{ownPG Λ Σ},
ownP σ1 ={}=∗ WP e {{ Φ }} |={,}=> σ', ownP σ' φ σ')
rtc step ([e], σ1) (t2, σ2)
φ σ2.
Proof.
intros Hwp Hsteps. eapply (wp_invariance Σ Λ e σ1 t2 σ2 _ Φ)=> //.
iIntros (?) "". iMod (own_alloc ( (Excl' (σ1 : leibnizC _)) (Excl' σ1)))
as (γσ) "[Hσ Hσf]"; first done.
iExists (λ σ, own γσ ( (Excl' (σ:leibnizC _)))). iFrame "Hσ".
iMod (Hwp (OwnPG _ _ _ _ γσ) with "[Hσf]") as "[$ H]"; first by rewrite /ownP.
iIntros "!> Hσ". iMod "H" as (σ2') "[Hσf %]". rewrite /ownP.
iDestruct (own_valid_2 with "Hσ Hσf")
as %[->%Excl_included%leibniz_equiv _]%auth_valid_discrete_2; auto.
Qed.
(** Lifting *)
Section lifting.
Context `{ownPG Λ Σ}.
Implicit Types e : expr Λ.
Implicit Types Φ : val Λ iProp Σ.
Lemma ownP_twice σ1 σ2 : ownP σ1 ownP σ2 False.
Proof. rewrite /ownP -own_op own_valid. by iIntros (?). Qed.
Global Instance ownP_timeless σ : TimelessP (@ownP (state Λ) Σ _ σ).
Proof. rewrite /ownP; apply _. Qed.
Lemma ownP_lift_step E Φ e1 :
(|={E,}=> σ1, reducible e1 σ1 ownP σ1
e2 σ2 efs, prim_step e1 σ1 e2 σ2 efs -∗ ownP σ2
={,E}=∗ WP e2 @ E {{ Φ }} [ list] ef efs, WP ef {{ _, True }})
WP e1 @ E {{ Φ }}.
Proof.
iIntros "H". destruct (to_val e1) as [v|] eqn:EQe1.
- apply of_to_val in EQe1 as <-. iApply fupd_wp.
iMod "H" as (σ1) "[Hred _]"; iDestruct "Hred" as %Hred%reducible_not_val.
move: Hred; by rewrite to_of_val.
- iApply wp_lift_step; [done|]; iIntros (σ1) "Hσ".
iMod "H" as (σ1') "(% & >Hσf & H)". rewrite /ownP.
iDestruct (own_valid_2 with "Hσ Hσf")
as %[->%Excl_included%leibniz_equiv _]%auth_valid_discrete_2.
iModIntro; iSplit; [done|]; iNext; iIntros (e2 σ2 efs Hstep).
iMod (own_update_2 with "Hσ Hσf") as "[Hσ Hσf]".
{ by apply auth_update, option_local_update,
(exclusive_local_update _ (Excl σ2)). }
iFrame "Hσ". iApply ("H" with "* []"); eauto.
Qed.
Lemma ownP_lift_pure_step `{Inhabited (state Λ)} E Φ e1 :
( σ1, reducible e1 σ1)
( σ1 e2 σ2 efs, prim_step e1 σ1 e2 σ2 efs σ1 = σ2)
( e2 efs σ, prim_step e1 σ e2 σ efs
WP e2 @ E {{ Φ }} [ list] ef efs, WP ef {{ _, True }})
WP e1 @ E {{ Φ }}.
Proof.
iIntros (Hsafe Hstep) "H". iApply wp_lift_step.
{ eapply reducible_not_val, (Hsafe inhabitant). }
iIntros (σ1) "Hσ". iMod (fupd_intro_mask' E ) as "Hclose"; first set_solver.
iModIntro. iSplit; [done|]; iNext; iIntros (e2 σ2 efs ?).
destruct (Hstep σ1 e2 σ2 efs); auto; subst.
iMod "Hclose"; iModIntro. iFrame "Hσ". iApply "H"; auto.
Qed.
(** Derived lifting lemmas. *)
Lemma ownP_lift_atomic_step {E Φ} e1 σ1 :
reducible e1 σ1
( ownP σ1 e2 σ2 efs, prim_step e1 σ1 e2 σ2 efs -∗ ownP σ2 -∗
default False (to_val e2) Φ [ list] ef efs, WP ef {{ _, True }})
WP e1 @ E {{ Φ }}.
Proof.
iIntros (?) "[Hσ H]". iApply (ownP_lift_step E _ e1).
iMod (fupd_intro_mask' E ) as "Hclose"; first set_solver. iModIntro.
iExists σ1. iFrame "Hσ"; iSplit; eauto.
iNext; iIntros (e2 σ2 efs) "% Hσ".
iDestruct ("H" $! e2 σ2 efs with "[] [Hσ]") as "[HΦ $]"; [by eauto..|].
destruct (to_val e2) eqn:?; last by iExFalso.
iMod "Hclose". iApply wp_value; auto using to_of_val. done.
Qed.
Lemma ownP_lift_atomic_det_step {E Φ e1} σ1 v2 σ2 efs :
reducible e1 σ1
( e2' σ2' efs', prim_step e1 σ1 e2' σ2' efs'
σ2 = σ2' to_val e2' = Some v2 efs = efs')
ownP σ1 (ownP σ2 -∗
Φ v2 [ list] ef efs, WP ef {{ _, True }})
WP e1 @ E {{ Φ }}.
Proof.
iIntros (? Hdet) "[Hσ1 Hσ2]". iApply (ownP_lift_atomic_step _ σ1); try done.
iFrame. iNext. iIntros (e2' σ2' efs') "% Hσ2'".
edestruct Hdet as (->&Hval&->). done. rewrite Hval. by iApply "Hσ2".
Qed.
Lemma ownP_lift_pure_det_step `{Inhabited (state Λ)} {E Φ} e1 e2 efs :
( σ1, reducible e1 σ1)
( σ1 e2' σ2 efs', prim_step e1 σ1 e2' σ2 efs' σ1 = σ2 e2 = e2' efs = efs')
(WP e2 @ E {{ Φ }} [ list] ef efs, WP ef {{ _, True }})
WP e1 @ E {{ Φ }}.
Proof.
iIntros (? Hpuredet) "?". iApply (ownP_lift_pure_step E); try done.
by intros; eapply Hpuredet. iNext. by iIntros (e' efs' σ (_&->&->)%Hpuredet).
Qed.
End lifting.
Section ectx_lifting.
Import ectx_language.
Context {expr val ectx state} {Λ : EctxLanguage expr val ectx state}.
Context `{ownPG (ectx_lang expr) Σ} `{Inhabited state}.
Implicit Types Φ : val iProp Σ.
Implicit Types e : expr.
Hint Resolve head_prim_reducible head_reducible_prim_step.
Lemma ownP_lift_head_step E Φ e1 :
(|={E,}=> σ1, head_reducible e1 σ1 ownP σ1
e2 σ2 efs, head_step e1 σ1 e2 σ2 efs -∗ ownP σ2
={,E}=∗ WP e2 @ E {{ Φ }} [ list] ef efs, WP ef {{ _, True }})
WP e1 @ E {{ Φ }}.
Proof.
iIntros "H". iApply (ownP_lift_step E); try done.
iMod "H" as (σ1) "(%&Hσ1&Hwp)". iModIntro. iExists σ1.
iSplit; first by eauto. iFrame. iNext. iIntros (e2 σ2 efs) "% ?".
iApply ("Hwp" with "* []"); by eauto.
Qed.
Lemma ownP_lift_pure_head_step E Φ e1 :
( σ1, head_reducible e1 σ1)
( σ1 e2 σ2 efs, head_step e1 σ1 e2 σ2 efs σ1 = σ2)
( e2 efs σ, head_step e1 σ e2 σ efs
WP e2 @ E {{ Φ }} [ list] ef efs, WP ef {{ _, True }})
WP e1 @ E {{ Φ }}.
Proof.
iIntros (??) "H". iApply ownP_lift_pure_step; eauto. iNext.
iIntros (????). iApply "H". eauto.
Qed.
Lemma ownP_lift_atomic_head_step {E Φ} e1 σ1 :
head_reducible e1 σ1
ownP σ1 ( e2 σ2 efs,
head_step e1 σ1 e2 σ2 efs -∗ ownP σ2 -∗
default False (to_val e2) Φ [ list] ef efs, WP ef {{ _, True }})
WP e1 @ E {{ Φ }}.
Proof.
iIntros (?) "[? H]". iApply ownP_lift_atomic_step; eauto. iFrame. iNext.
iIntros (???) "% ?". iApply ("H" with "* []"); eauto.
Qed.
Lemma ownP_lift_atomic_det_head_step {E Φ e1} σ1 v2 σ2 efs :
head_reducible e1 σ1
( e2' σ2' efs', head_step e1 σ1 e2' σ2' efs'
σ2 = σ2' to_val e2' = Some v2 efs = efs')
ownP σ1 (ownP σ2 -∗ Φ v2 [ list] ef efs, WP ef {{ _, True }})
WP e1 @ E {{ Φ }}.
Proof. eauto using ownP_lift_atomic_det_step. Qed.
Lemma ownP_lift_atomic_det_head_step_no_fork {E e1} σ1 v2 σ2 :
head_reducible e1 σ1
( e2' σ2' efs', head_step e1 σ1 e2' σ2' efs'
σ2 = σ2' to_val e2' = Some v2 [] = efs')
{{{ ownP σ1 }}} e1 @ E {{{ RET v2; ownP σ2 }}}.
Proof.
intros. rewrite -(ownP_lift_atomic_det_head_step σ1 v2 σ2 []); [|done..].
rewrite big_sepL_nil right_id. by apply uPred.wand_intro_r.
Qed.
Lemma ownP_lift_pure_det_head_step {E Φ} e1 e2 efs :
( σ1, head_reducible e1 σ1)
( σ1 e2' σ2 efs', head_step e1 σ1 e2' σ2 efs' σ1 = σ2 e2 = e2' efs = efs')
(WP e2 @ E {{ Φ }} [ list] ef efs, WP ef {{ _, True }})
WP e1 @ E {{ Φ }}.
Proof. eauto using wp_lift_pure_det_step. Qed.
Lemma ownP_lift_pure_det_head_step_no_fork {E Φ} e1 e2 :
to_val e1 = None
( σ1, head_reducible e1 σ1)
( σ1 e2' σ2 efs', head_step e1 σ1 e2' σ2 efs' σ1 = σ2 e2 = e2' [] = efs')
WP e2 @ E {{ Φ }} WP e1 @ E {{ Φ }}.
Proof.
intros. rewrite -(wp_lift_pure_det_step e1 e2 []) ?big_sepL_nil ?right_id; eauto.
Qed.
End ectx_lifting.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment