Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Paolo G. Giarrusso
iris
Commits
925a9169
Commit
925a9169
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Backwards compatibility layer for ownP.
parent
b0039d65
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
_CoqProject
+1
-0
1 addition, 0 deletions
_CoqProject
program_logic/adequacy.v
+2
-2
2 additions, 2 deletions
program_logic/adequacy.v
program_logic/ownp.v
+231
-0
231 additions, 0 deletions
program_logic/ownp.v
with
234 additions
and
2 deletions
_CoqProject
+
1
−
0
View file @
925a9169
...
...
@@ -93,6 +93,7 @@ program_logic/ectx_language.v
program_logic/ectxi_language.v
program_logic/ectx_lifting.v
program_logic/gen_heap.v
program_logic/ownp.v
heap_lang/lang.v
heap_lang/tactics.v
heap_lang/wp_tactics.v
...
...
This diff is collapsed.
Click to expand it.
program_logic/adequacy.v
+
2
−
2
View file @
925a9169
...
...
@@ -165,7 +165,7 @@ Proof.
Qed
.
End
adequacy
.
Theorem
wp_adequacy
Σ
Λ
`{
invPreG
Σ
}
(
e
:
expr
Λ
)
σ
φ
:
Theorem
wp_adequacy
Σ
Λ
`{
invPreG
Σ
}
e
σ
φ
:
(
∀
`{
Hinv
:
invG
Σ
},
True
=
{
⊤
}
=∗
∃
stateI
:
state
Λ
→
iProp
Σ
,
let
_
:
irisG
Λ
Σ
:=
IrisG
_
_
Hinv
stateI
in
...
...
@@ -189,7 +189,7 @@ Proof.
iFrame
.
by
iApply
big_sepL_nil
.
Qed
.
Theorem
wp_invariance
{
Λ
}
`{
invPreG
Σ
}
e
σ1
t2
σ2
φ
Φ
:
Theorem
wp_invariance
Σ
Λ
`{
invPreG
Σ
}
e
σ1
t2
σ2
φ
Φ
:
(
∀
`{
Hinv
:
invG
Σ
},
True
=
{
⊤
}
=∗
∃
stateI
:
state
Λ
→
iProp
Σ
,
let
_
:
irisG
Λ
Σ
:=
IrisG
_
_
Hinv
stateI
in
...
...
This diff is collapsed.
Click to expand it.
program_logic/ownp.v
0 → 100644
+
231
−
0
View file @
925a9169
From
iris
.
program_logic
Require
Export
weakestpre
.
From
iris
.
program_logic
Require
Import
lifting
adequacy
.
From
iris
.
program_logic
Require
ectx_language
.
From
iris
.
algebra
Require
Import
auth
.
From
iris
.
proofmode
Require
Import
tactics
classes
.
Class
ownPG'
(
Λstate
:
Type
)
(
Σ
:
gFunctors
)
:=
OwnPG
{
ownP_invG
:
invG
Σ
;
ownP_inG
:>
inG
Σ
(
authR
(
optionUR
(
exclR
(
leibnizC
Λstate
))));
ownP_name
:
gname
;
}
.
Notation
ownPG
Λ
Σ
:=
(
ownPG'
(
state
Λ
)
Σ
)
.
Instance
ownPG_irisG
`{
ownPG'
Λstate
Σ
}
:
irisG'
Λstate
Σ
:=
{
iris_invG
:=
ownP_invG
;
state_interp
σ
:=
own
ownP_name
(
●
(
Excl'
(
σ
:
leibnizC
Λstate
)))
}
.
Definition
ownPΣ
(
Λstate
:
Type
)
:
gFunctors
:=
#
[
invΣ
;
GFunctor
(
constRF
(
authUR
(
optionUR
(
exclR
(
leibnizC
Λstate
)))))]
.
Class
ownPPreG'
(
Λstate
:
Type
)
(
Σ
:
gFunctors
)
:
Set
:=
IrisPreG
{
ownPPre_invG
:>
invPreG
Σ
;
ownPPre_inG
:>
inG
Σ
(
authR
(
optionUR
(
exclR
(
leibnizC
Λstate
))))
}
.
Notation
ownPPreG
Λ
Σ
:=
(
ownPPreG'
(
state
Λ
)
Σ
)
.
Instance
subG_ownPΣ
{
Λstate
Σ
}
:
subG
(
ownPΣ
Λstate
)
Σ
→
ownPPreG'
Λstate
Σ
.
Proof
.
intros
[??
%
subG_inG
]
%
subG_inv
;
constructor
;
apply
_
.
Qed
.
(** Ownership *)
Definition
ownP
`{
ownPG'
Λstate
Σ
}
(
σ
:
Λstate
)
:
iProp
Σ
:=
own
ownP_name
(
◯
(
Excl'
σ
))
.
Typeclasses
Opaque
ownP
.
Instance
:
Params
(
@
ownP
)
3
.
(* Adequacy *)
Theorem
ownP_adequacy
Σ
`{
ownPPreG
Λ
Σ
}
e
σ
φ
:
(
∀
`{
ownPG
Λ
Σ
},
ownP
σ
⊢
WP
e
{{
v
,
⌜
φ
v
⌝
}})
→
adequate
e
σ
φ
.
Proof
.
intros
Hwp
.
apply
(
wp_adequacy
Σ
_)
.
iIntros
(?)
""
.
iMod
(
own_alloc
(
●
(
Excl'
(
σ
:
leibnizC
_))
⋅
◯
(
Excl'
σ
)))
as
(
γσ
)
"[Hσ Hσf]"
;
first
done
.
iModIntro
.
iExists
(
λ
σ
,
own
γσ
(
●
(
Excl'
(
σ
:
leibnizC
_))))
.
iFrame
"Hσ"
.
iApply
(
Hwp
(
OwnPG
_
_
_
_
γσ
))
.
by
rewrite
/
ownP
.
Qed
.
Theorem
ownP_invariance
Σ
`{
ownPPreG
Λ
Σ
}
e
σ1
t2
σ2
φ
Φ
:
(
∀
`{
ownPG
Λ
Σ
},
ownP
σ1
=
{
⊤
}
=∗
WP
e
{{
Φ
}}
∗
|
=
{
⊤
,
∅
}=>
∃
σ'
,
ownP
σ'
∧
⌜
φ
σ'
⌝
)
→
rtc
step
([
e
],
σ1
)
(
t2
,
σ2
)
→
φ
σ2
.
Proof
.
intros
Hwp
Hsteps
.
eapply
(
wp_invariance
Σ
Λ
e
σ1
t2
σ2
_
Φ
)=>
//.
iIntros
(?)
""
.
iMod
(
own_alloc
(
●
(
Excl'
(
σ1
:
leibnizC
_))
⋅
◯
(
Excl'
σ1
)))
as
(
γσ
)
"[Hσ Hσf]"
;
first
done
.
iExists
(
λ
σ
,
own
γσ
(
●
(
Excl'
(
σ
:
leibnizC
_))))
.
iFrame
"Hσ"
.
iMod
(
Hwp
(
OwnPG
_
_
_
_
γσ
)
with
"[Hσf]"
)
as
"[$ H]"
;
first
by
rewrite
/
ownP
.
iIntros
"!> Hσ"
.
iMod
"H"
as
(
σ2'
)
"[Hσf %]"
.
rewrite
/
ownP
.
iDestruct
(
own_valid_2
with
"Hσ Hσf"
)
as
%
[
->%
Excl_included
%
leibniz_equiv
_]
%
auth_valid_discrete_2
;
auto
.
Qed
.
(** Lifting *)
Section
lifting
.
Context
`{
ownPG
Λ
Σ
}
.
Implicit
Types
e
:
expr
Λ
.
Implicit
Types
Φ
:
val
Λ
→
iProp
Σ
.
Lemma
ownP_twice
σ1
σ2
:
ownP
σ1
∗
ownP
σ2
⊢
False
.
Proof
.
rewrite
/
ownP
-
own_op
own_valid
.
by
iIntros
(?)
.
Qed
.
Global
Instance
ownP_timeless
σ
:
TimelessP
(
@
ownP
(
state
Λ
)
Σ
_
σ
)
.
Proof
.
rewrite
/
ownP
;
apply
_
.
Qed
.
Lemma
ownP_lift_step
E
Φ
e1
:
(|
=
{
E
,
∅
}=>
∃
σ1
,
⌜
reducible
e1
σ1
⌝
∗
▷
ownP
σ1
∗
▷
∀
e2
σ2
efs
,
⌜
prim_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
=
{
∅
,
E
}
=∗
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
iIntros
"H"
.
destruct
(
to_val
e1
)
as
[
v
|]
eqn
:
EQe1
.
-
apply
of_to_val
in
EQe1
as
<-.
iApply
fupd_wp
.
iMod
"H"
as
(
σ1
)
"[Hred _]"
;
iDestruct
"Hred"
as
%
Hred
%
reducible_not_val
.
move
:
Hred
;
by
rewrite
to_of_val
.
-
iApply
wp_lift_step
;
[
done
|];
iIntros
(
σ1
)
"Hσ"
.
iMod
"H"
as
(
σ1'
)
"(% & >Hσf & H)"
.
rewrite
/
ownP
.
iDestruct
(
own_valid_2
with
"Hσ Hσf"
)
as
%
[
->%
Excl_included
%
leibniz_equiv
_]
%
auth_valid_discrete_2
.
iModIntro
;
iSplit
;
[
done
|];
iNext
;
iIntros
(
e2
σ2
efs
Hstep
)
.
iMod
(
own_update_2
with
"Hσ Hσf"
)
as
"[Hσ Hσf]"
.
{
by
apply
auth_update
,
option_local_update
,
(
exclusive_local_update
_
(
Excl
σ2
))
.
}
iFrame
"Hσ"
.
iApply
(
"H"
with
"* []"
);
eauto
.
Qed
.
Lemma
ownP_lift_pure_step
`{
Inhabited
(
state
Λ
)}
E
Φ
e1
:
(
∀
σ1
,
reducible
e1
σ1
)
→
(
∀
σ1
e2
σ2
efs
,
prim_step
e1
σ1
e2
σ2
efs
→
σ1
=
σ2
)
→
(
▷
∀
e2
efs
σ
,
⌜
prim_step
e1
σ
e2
σ
efs
⌝
→
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
iIntros
(
Hsafe
Hstep
)
"H"
.
iApply
wp_lift_step
.
{
eapply
reducible_not_val
,
(
Hsafe
inhabitant
)
.
}
iIntros
(
σ1
)
"Hσ"
.
iMod
(
fupd_intro_mask'
E
∅
)
as
"Hclose"
;
first
set_solver
.
iModIntro
.
iSplit
;
[
done
|];
iNext
;
iIntros
(
e2
σ2
efs
?)
.
destruct
(
Hstep
σ1
e2
σ2
efs
);
auto
;
subst
.
iMod
"Hclose"
;
iModIntro
.
iFrame
"Hσ"
.
iApply
"H"
;
auto
.
Qed
.
(** Derived lifting lemmas. *)
Lemma
ownP_lift_atomic_step
{
E
Φ
}
e1
σ1
:
reducible
e1
σ1
→
(
▷
ownP
σ1
∗
▷
∀
e2
σ2
efs
,
⌜
prim_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
-∗
default
False
(
to_val
e2
)
Φ
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
iIntros
(?)
"[Hσ H]"
.
iApply
(
ownP_lift_step
E
_
e1
)
.
iMod
(
fupd_intro_mask'
E
∅
)
as
"Hclose"
;
first
set_solver
.
iModIntro
.
iExists
σ1
.
iFrame
"Hσ"
;
iSplit
;
eauto
.
iNext
;
iIntros
(
e2
σ2
efs
)
"% Hσ"
.
iDestruct
(
"H"
$!
e2
σ2
efs
with
"[] [Hσ]"
)
as
"[HΦ $]"
;
[
by
eauto
..|]
.
destruct
(
to_val
e2
)
eqn
:?;
last
by
iExFalso
.
iMod
"Hclose"
.
iApply
wp_value
;
auto
using
to_of_val
.
done
.
Qed
.
Lemma
ownP_lift_atomic_det_step
{
E
Φ
e1
}
σ1
v2
σ2
efs
:
reducible
e1
σ1
→
(
∀
e2'
σ2'
efs'
,
prim_step
e1
σ1
e2'
σ2'
efs'
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
efs
=
efs'
)
→
▷
ownP
σ1
∗
▷
(
ownP
σ2
-∗
Φ
v2
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
iIntros
(?
Hdet
)
"[Hσ1 Hσ2]"
.
iApply
(
ownP_lift_atomic_step
_
σ1
);
try
done
.
iFrame
.
iNext
.
iIntros
(
e2'
σ2'
efs'
)
"% Hσ2'"
.
edestruct
Hdet
as
(
->
&
Hval
&
->
)
.
done
.
rewrite
Hval
.
by
iApply
"Hσ2"
.
Qed
.
Lemma
ownP_lift_pure_det_step
`{
Inhabited
(
state
Λ
)}
{
E
Φ
}
e1
e2
efs
:
(
∀
σ1
,
reducible
e1
σ1
)
→
(
∀
σ1
e2'
σ2
efs'
,
prim_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
▷
(
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
iIntros
(?
Hpuredet
)
"?"
.
iApply
(
ownP_lift_pure_step
E
);
try
done
.
by
intros
;
eapply
Hpuredet
.
iNext
.
by
iIntros
(
e'
efs'
σ
(_
&
->
&
->
)
%
Hpuredet
)
.
Qed
.
End
lifting
.
Section
ectx_lifting
.
Import
ectx_language
.
Context
{
expr
val
ectx
state
}
{
Λ
:
EctxLanguage
expr
val
ectx
state
}
.
Context
`{
ownPG
(
ectx_lang
expr
)
Σ
}
`{
Inhabited
state
}
.
Implicit
Types
Φ
:
val
→
iProp
Σ
.
Implicit
Types
e
:
expr
.
Hint
Resolve
head_prim_reducible
head_reducible_prim_step
.
Lemma
ownP_lift_head_step
E
Φ
e1
:
(|
=
{
E
,
∅
}=>
∃
σ1
,
⌜
head_reducible
e1
σ1
⌝
∗
▷
ownP
σ1
∗
▷
∀
e2
σ2
efs
,
⌜
head_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
=
{
∅
,
E
}
=∗
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
iIntros
"H"
.
iApply
(
ownP_lift_step
E
);
try
done
.
iMod
"H"
as
(
σ1
)
"(%&Hσ1&Hwp)"
.
iModIntro
.
iExists
σ1
.
iSplit
;
first
by
eauto
.
iFrame
.
iNext
.
iIntros
(
e2
σ2
efs
)
"% ?"
.
iApply
(
"Hwp"
with
"* []"
);
by
eauto
.
Qed
.
Lemma
ownP_lift_pure_head_step
E
Φ
e1
:
(
∀
σ1
,
head_reducible
e1
σ1
)
→
(
∀
σ1
e2
σ2
efs
,
head_step
e1
σ1
e2
σ2
efs
→
σ1
=
σ2
)
→
(
▷
∀
e2
efs
σ
,
⌜
head_step
e1
σ
e2
σ
efs
⌝
→
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
iIntros
(??)
"H"
.
iApply
ownP_lift_pure_step
;
eauto
.
iNext
.
iIntros
(????)
.
iApply
"H"
.
eauto
.
Qed
.
Lemma
ownP_lift_atomic_head_step
{
E
Φ
}
e1
σ1
:
head_reducible
e1
σ1
→
▷
ownP
σ1
∗
▷
(
∀
e2
σ2
efs
,
⌜
head_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
-∗
default
False
(
to_val
e2
)
Φ
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
iIntros
(?)
"[? H]"
.
iApply
ownP_lift_atomic_step
;
eauto
.
iFrame
.
iNext
.
iIntros
(???)
"% ?"
.
iApply
(
"H"
with
"* []"
);
eauto
.
Qed
.
Lemma
ownP_lift_atomic_det_head_step
{
E
Φ
e1
}
σ1
v2
σ2
efs
:
head_reducible
e1
σ1
→
(
∀
e2'
σ2'
efs'
,
head_step
e1
σ1
e2'
σ2'
efs'
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
efs
=
efs'
)
→
▷
ownP
σ1
∗
▷
(
ownP
σ2
-∗
Φ
v2
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
eauto
using
ownP_lift_atomic_det_step
.
Qed
.
Lemma
ownP_lift_atomic_det_head_step_no_fork
{
E
e1
}
σ1
v2
σ2
:
head_reducible
e1
σ1
→
(
∀
e2'
σ2'
efs'
,
head_step
e1
σ1
e2'
σ2'
efs'
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
[]
=
efs'
)
→
{{{
▷
ownP
σ1
}}}
e1
@
E
{{{
RET
v2
;
ownP
σ2
}}}
.
Proof
.
intros
.
rewrite
-
(
ownP_lift_atomic_det_head_step
σ1
v2
σ2
[]);
[|
done
..]
.
rewrite
big_sepL_nil
right_id
.
by
apply
uPred
.
wand_intro_r
.
Qed
.
Lemma
ownP_lift_pure_det_head_step
{
E
Φ
}
e1
e2
efs
:
(
∀
σ1
,
head_reducible
e1
σ1
)
→
(
∀
σ1
e2'
σ2
efs'
,
head_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
▷
(
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
eauto
using
wp_lift_pure_det_step
.
Qed
.
Lemma
ownP_lift_pure_det_head_step_no_fork
{
E
Φ
}
e1
e2
:
to_val
e1
=
None
→
(
∀
σ1
,
head_reducible
e1
σ1
)
→
(
∀
σ1
e2'
σ2
efs'
,
head_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
[]
=
efs'
)
→
▷
WP
e2
@
E
{{
Φ
}}
⊢
WP
e1
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_pure_det_step
e1
e2
[])
?big_sepL_nil
?right_id
;
eauto
.
Qed
.
End
ectx_lifting
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment