Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Paolo G. Giarrusso
iris
Commits
a1407723
Commit
a1407723
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Nice notation for mkSet.
parent
0ef28164
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
barrier/proof.v
+4
-4
4 additions, 4 deletions
barrier/proof.v
barrier/protocol.v
+12
-14
12 additions, 14 deletions
barrier/protocol.v
prelude/sets.v
+17
-12
17 additions, 12 deletions
prelude/sets.v
with
33 additions
and
30 deletions
barrier/proof.v
+
4
−
4
View file @
a1407723
...
...
@@ -163,8 +163,8 @@ Proof.
+
apply
pvs_mono
.
rewrite
-
sts_ownS_op
;
eauto
using
i_states_closed
,
low_states_closed
.
set_solver
.
+
move
=>
/=
t
.
rewrite
!
mkSet_
elem_of
;
intros
[
<-|<-
];
set_solver
.
+
rewrite
!
mkSet_
elem_of
;
set_solver
.
+
move
=>
/=
t
.
rewrite
!
elem_of
_mkSet
;
intros
[
<-|<-
];
set_solver
.
+
rewrite
!
elem_of
_mkSet
;
set_solver
.
+
auto
using
sts
.
closed_op
,
i_states_closed
,
low_states_closed
.
Qed
.
...
...
@@ -293,7 +293,7 @@ Proof.
apply
sep_mono
.
*
rewrite
-
sts_ownS_op
;
eauto
using
i_states_closed
.
+
apply
sts_own_weaken
;
eauto
using
sts
.
closed_op
,
i_states_closed
.
rewrite
!
mkSet_
elem_of
;
set_solver
.
rewrite
!
elem_of
_mkSet
;
set_solver
.
+
set_solver
.
*
rewrite
const_equiv
//
!
left_id
.
rewrite
{
1
}[
heap_ctx
_]
always_sep_dup
{
1
}[
sts_ctx
_
_
_]
always_sep_dup
.
...
...
@@ -319,7 +319,7 @@ Proof.
apply
sep_mono
.
*
rewrite
-
sts_ownS_op
;
eauto
using
i_states_closed
.
+
apply
sts_own_weaken
;
eauto
using
sts
.
closed_op
,
i_states_closed
.
rewrite
!
mkSet_
elem_of
;
set_solver
.
rewrite
!
elem_of
_mkSet
;
set_solver
.
+
set_solver
.
*
rewrite
const_equiv
//
!
left_id
.
rewrite
{
1
}[
heap_ctx
_]
always_sep_dup
{
1
}[
sts_ctx
_
_
_]
always_sep_dup
.
...
...
This diff is collapsed.
Click to expand it.
barrier/protocol.v
+
12
−
14
View file @
a1407723
...
...
@@ -18,7 +18,7 @@ Inductive prim_step : relation state :=
|
ChangePhase
I
:
prim_step
(
State
Low
I
)
(
State
High
I
)
.
Definition
change_tok
(
I
:
gset
gname
)
:
set
token
:=
mkSet
(
λ
t
,
match
t
with
Change
i
=>
i
∉
I
|
Send
=>
False
end
)
.
{[
t
|
match
t
with
Change
i
=>
i
∉
I
|
Send
=>
False
end
]}
.
Definition
send_tok
(
p
:
phase
)
:
set
token
:=
match
p
with
Low
=>
∅
|
High
=>
{[
Send
]}
end
.
Definition
tok
(
s
:
state
)
:
set
token
:=
...
...
@@ -28,29 +28,27 @@ Global Arguments tok !_ /.
Canonical
Structure
sts
:=
sts
.
STS
prim_step
tok
.
(* The set of states containing some particular i *)
Definition
i_states
(
i
:
gname
)
:
set
state
:=
mkSet
(
λ
s
,
i
∈
state_I
s
)
.
Definition
i_states
(
i
:
gname
)
:
set
state
:=
{[
s
|
i
∈
state_I
s
]}
.
(* The set of low states *)
Definition
low_states
:
set
state
:=
mkSet
(
λ
s
,
if
state_phase
s
is
Low
then
True
else
False
)
.
Definition
low_states
:
set
state
:=
{[
s
|
state_phase
s
=
Low
]}
.
Lemma
i_states_closed
i
:
sts
.
closed
(
i_states
i
)
{[
Change
i
]}
.
Proof
.
split
.
-
move
=>[
p
I
]
.
rewrite
/=
!
mkSet_
elem_of
/=
=>
HI
.
-
move
=>[
p
I
]
.
rewrite
/=
!
elem_of
_mkSet
/=
=>
HI
.
destruct
p
;
set_solver
by
eauto
.
-
(* If we do the destruct of the states early, and then inversion
on the proof of a transition, it doesn't work - we do not obtain
the equalities we need. So we destruct the states late, because this
means we can use "destruct" instead of "inversion". *)
move
=>
s1
s2
.
rewrite
!
mkSet_
elem_of
.
move
=>
s1
s2
.
rewrite
!
elem_of
_mkSet
.
intros
Hs1
[
T1
T2
Hdisj
Hstep'
]
.
inversion_clear
Hstep'
as
[?
?
?
?
Htrans
_
_
Htok
]
.
destruct
Htrans
;
simpl
in
*
;
last
done
.
move
:
Hs1
Hdisj
Htok
.
rewrite
elem_of_equiv_empty
elem_of_equiv
.
move
=>
?
/
(_
(
Change
i
))
Hdisj
/
(_
(
Change
i
));
move
:
Hdisj
.
rewrite
elem_of_intersection
elem_of_union
!
mkSet_
elem_of
.
rewrite
elem_of_intersection
elem_of_union
!
elem_of
_mkSet
.
intros
;
apply
dec_stable
.
destruct
p
;
set_solver
.
Qed
.
...
...
@@ -58,13 +56,13 @@ Qed.
Lemma
low_states_closed
:
sts
.
closed
low_states
{[
Send
]}
.
Proof
.
split
.
-
move
=>[
p
I
]
.
rewrite
/=
/
tok
!
mkSet_
elem_of
/=
=>
HI
.
-
move
=>[
p
I
]
.
rewrite
/=
/
tok
!
elem_of
_mkSet
/=
=>
HI
.
destruct
p
;
set_solver
.
-
move
=>
s1
s2
.
rewrite
!
mkSet_
elem_of
.
-
move
=>
s1
s2
.
rewrite
!
elem_of
_mkSet
.
intros
Hs1
[
T1
T2
Hdisj
Hstep'
]
.
inversion_clear
Hstep'
as
[?
?
?
?
Htrans
_
_
Htok
]
.
destruct
Htrans
;
simpl
in
*
;
first
by
destruct
p
.
set_solver
.
exfalso
;
set_solver
.
Qed
.
(* Proof that we can take the steps we need. *)
...
...
@@ -79,7 +77,7 @@ Proof.
constructor
;
first
constructor
;
simpl
;
[
set_solver
by
eauto
..|]
.
(* TODO this proof is rather annoying. *)
apply
elem_of_equiv
=>
t
.
rewrite
!
elem_of_union
.
rewrite
!
mkSet_
elem_of
/
change_tok
/=.
rewrite
!
elem_of
_mkSet
/
change_tok
/=.
destruct
t
as
[
j
|];
last
set_solver
.
rewrite
elem_of_difference
elem_of_singleton
.
destruct
(
decide
(
i
=
j
));
set_solver
.
...
...
@@ -96,11 +94,11 @@ Proof.
-
destruct
p
;
set_solver
.
(* This gets annoying... and I think I can see a pattern with all these proofs. Automatable? *)
-
apply
elem_of_equiv
=>
t
.
destruct
t
;
last
set_solver
.
rewrite
!
mkSet_
elem_of
!
not_elem_of_union
!
not_elem_of_singleton
rewrite
!
elem_of
_mkSet
!
not_elem_of_union
!
not_elem_of_singleton
not_elem_of_difference
elem_of_singleton
!
(
inj_iff
Change
)
.
destruct
p
;
naive_solver
.
-
apply
elem_of_equiv
=>
t
.
destruct
t
as
[
j
|];
last
set_solver
.
rewrite
!
mkSet_
elem_of
!
not_elem_of_union
!
not_elem_of_singleton
rewrite
!
elem_of
_mkSet
!
not_elem_of_union
!
not_elem_of_singleton
not_elem_of_difference
elem_of_singleton
!
(
inj_iff
Change
)
.
destruct
(
decide
(
i1
=
j
))
as
[
->
|];
first
tauto
.
destruct
(
decide
(
i2
=
j
))
as
[
->
|];
intuition
.
...
...
This diff is collapsed.
Click to expand it.
prelude/sets.v
+
17
−
12
View file @
a1407723
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file implements sets as functions into Prop. *)
From
prelude
Require
Export
prelude
.
From
prelude
Require
Export
tactics
.
Record
set
(
A
:
Type
)
:
Type
:=
mkSet
{
set_car
:
A
→
Prop
}
.
Add
Printing
Constructor
set
.
Arguments
mkSet
{_}
_
.
Arguments
set_car
{_}
_
_
.
Instance
set_all
{
A
}
:
Top
(
set
A
)
:=
mkSet
(
λ
_
,
True
)
.
Instance
set_empty
{
A
}
:
Empty
(
set
A
)
:=
mkSet
(
λ
_,
False
)
.
Instance
set_singleton
{
A
}
:
Singleton
A
(
set
A
)
:=
λ
x
,
mkSet
(
x
=
)
.
Notation
"{[ x | P ]}"
:=
(
mkSet
(
λ
x
,
P
))
(
at
level
1
,
format
"{[ x | P ]}"
)
:
C_scope
.
Instance
set_elem_of
{
A
}
:
ElemOf
A
(
set
A
)
:=
λ
x
X
,
set_car
X
x
.
Instance
set_union
{
A
}
:
Union
(
set
A
)
:=
λ
X1
X2
,
mkSet
(
λ
x
,
x
∈
X1
∨
x
∈
X2
)
.
Instance
set_all
{
A
}
:
Top
(
set
A
)
:=
{[
_
|
True
]}
.
Instance
set_empty
{
A
}
:
Empty
(
set
A
)
:=
{[
_
|
False
]}
.
Instance
set_singleton
{
A
}
:
Singleton
A
(
set
A
)
:=
λ
y
,
{[
x
|
y
=
x
]}
.
Instance
set_union
{
A
}
:
Union
(
set
A
)
:=
λ
X1
X2
,
{[
x
|
x
∈
X1
∨
x
∈
X2
]}
.
Instance
set_intersection
{
A
}
:
Intersection
(
set
A
)
:=
λ
X1
X2
,
mkSet
(
λ
x
,
x
∈
X1
∧
x
∈
X2
)
.
{[
x
|
x
∈
X1
∧
x
∈
X2
]}
.
Instance
set_difference
{
A
}
:
Difference
(
set
A
)
:=
λ
X1
X2
,
mkSet
(
λ
x
,
x
∈
X1
∧
x
∉
X2
)
.
{[
x
|
x
∈
X1
∧
x
∉
X2
]}
.
Instance
set_collection
:
Collection
A
(
set
A
)
.
Proof
.
by
split
;
[
split
|
|];
repeat
intro
.
Qed
.
Proof
.
split
;
[
split
|
|];
by
repeat
intro
.
Qed
.
Lemma
mkSet_
elem_of
{
A
}
(
f
:
A
→
Prop
)
x
:
(
x
∈
mkSet
f
)
=
f
x
.
Lemma
elem_of
_mkSet
{
A
}
(
P
:
A
→
Prop
)
x
:
(
x
∈
{[
x
|
P
x
]}
)
=
P
x
.
Proof
.
done
.
Qed
.
Lemma
mkSet_
not_elem_of
{
A
}
(
f
:
A
→
Prop
)
x
:
(
x
∉
mkSet
f
)
=
(
¬
f
x
)
.
Lemma
not_elem_of
_mkSet
{
A
}
(
P
:
A
→
Prop
)
x
:
(
x
∉
{[
x
|
P
x
]}
)
=
(
¬
P
x
)
.
Proof
.
done
.
Qed
.
Instance
set_ret
:
MRet
set
:=
λ
A
(
x
:
A
),
{[
x
]}
.
Instance
set_bind
:
MBind
set
:=
λ
A
B
(
f
:
A
→
set
B
)
(
X
:
set
A
),
mkSet
(
λ
b
,
∃
a
,
b
∈
f
a
∧
a
∈
X
)
.
Instance
set_fmap
:
FMap
set
:=
λ
A
B
(
f
:
A
→
B
)
(
X
:
set
A
),
mkSet
(
λ
b
,
∃
a
,
b
=
f
a
∧
a
∈
X
)
.
{[
b
|
∃
a
,
b
=
f
a
∧
a
∈
X
]}
.
Instance
set_join
:
MJoin
set
:=
λ
A
(
XX
:
set
(
set
A
)),
mkSet
(
λ
a
,
∃
X
,
a
∈
X
∧
X
∈
XX
)
.
{[
a
|
∃
X
,
a
∈
X
∧
X
∈
XX
]}
.
Instance
set_collection_monad
:
CollectionMonad
set
.
Proof
.
by
split
;
try
apply
_
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment