Skip to content
Snippets Groups Projects
Commit b1d4cb1d authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Functoriality of agreement.

Also change the definition of agreement slightly, so agree_map can be defined
for any function, and not just non-expansive functions.
parent 982d20ee
No related branches found
No related tags found
No related merge requests found
......@@ -5,36 +5,33 @@ Record agree A `{Dist A} := Agree {
agree_car :> nat A;
agree_is_valid : nat Prop;
agree_valid_0 : agree_is_valid 0;
agree_valid_S n : agree_is_valid (S n) agree_is_valid n;
agree_cauchy n i: n i agree_is_valid i agree_car n ={n}= agree_car i
agree_valid_S n : agree_is_valid (S n) agree_is_valid n
}.
Arguments Agree {_ _} _ _ _ _ _.
Arguments Agree {_ _} _ _ _ _.
Arguments agree_car {_ _} _ _.
Arguments agree_is_valid {_ _} _ _.
Arguments agree_cauchy {_ _} _ _ _ _ _.
Section agree.
Context `{Cofe A}.
Global Instance agree_validN : ValidN (agree A) := λ n x, agree_is_valid x n.
Lemma agree_valid_le (x : agree A) n n' : validN n x n' n validN n' x.
Proof. unfold validN, agree_validN; induction 2; eauto using agree_valid_S. Qed.
Global Instance agree_validN : ValidN (agree A) := λ n x,
agree_is_valid x n n', n' n x n' ={n'}= x n.
Lemma agree_valid_le (x : agree A) n n' :
agree_is_valid x n n' n agree_is_valid x n'.
Proof. induction 2; eauto using agree_valid_S. Qed.
Global Instance agree_valid : Valid (agree A) := λ x, n, validN n x.
Global Instance agree_equiv : Equiv (agree A) := λ x y,
( n, validN n x validN n y) ( n, validN n x x n ={n}= y n).
( n, agree_is_valid x n agree_is_valid y n)
( n, agree_is_valid x n x n ={n}= y n).
Global Instance agree_dist : Dist (agree A) := λ n x y,
( n', n' n validN n' x validN n' y)
( n', n' n validN n' x x n' ={n'}= y n').
( n', n' n agree_is_valid x n' agree_is_valid y n')
( n', n' n agree_is_valid x n' x n' ={n'}= y n').
Global Program Instance agree_compl : Compl (agree A) := λ c,
{| agree_car n := c n n; agree_is_valid n := validN n (c n) |}.
{| agree_car n := c n n; agree_is_valid n := agree_is_valid (c n) n |}.
Next Obligation. intros; apply agree_valid_0. Qed.
Next Obligation.
intros c n ?; apply (chain_cauchy c n (S n)), agree_valid_S; auto.
Qed.
Next Obligation.
intros c n i ??; simpl in *; rewrite <-(agree_cauchy (c i) n i) by done.
by apply (chain_cauchy c), (chain_cauchy c) with i, agree_valid_le with i.
Qed.
Instance agree_cofe : Cofe (agree A).
Proof.
split.
......@@ -45,7 +42,7 @@ Proof.
+ by split.
+ by intros x y Hxy; split; intros; symmetry; apply Hxy; auto; apply Hxy.
+ intros x y z Hxy Hyz; split; intros n'; intros.
- transitivity (validN n' y). by apply Hxy. by apply Hyz.
- transitivity (agree_is_valid y n'). by apply Hxy. by apply Hyz.
- transitivity (y n'). by apply Hxy. by apply Hyz, Hxy.
* intros n x y Hxy; split; intros; apply Hxy; auto.
* intros x y; split; intros n'; rewrite Nat.le_0_r; intros ->; [|done].
......@@ -54,10 +51,10 @@ Proof.
Qed.
Global Program Instance agree_op : Op (agree A) := λ x y,
{| agree_car := x; agree_is_valid n := validN n x validN n y x ={n}= y |}.
{| agree_car := x;
agree_is_valid n := agree_is_valid x n agree_is_valid y n x ={n}= y |}.
Next Obligation. by intros; simpl; split_ands; try apply agree_valid_0. Qed.
Next Obligation. naive_solver eauto using agree_valid_le, dist_S. Qed.
Next Obligation. by intros x y n i ? (?&?&?); apply agree_cauchy. Qed.
Next Obligation. naive_solver eauto using agree_valid_S, dist_S. Qed.
Global Instance agree_unit : Unit (agree A) := id.
Global Instance agree_minus : Minus (agree A) := λ x y, x.
Global Instance agree_included : Included (agree A) := λ x y, y x y.
......@@ -96,49 +93,57 @@ Instance: Proper ((≡) ==> (≡) ==> (≡)) op := ne_proper_2 _.
Global Instance agree_cmra : CMRA (agree A).
Proof.
split; try (apply _ || done).
* by intros n x y Hxy ?; apply Hxy.
* intros n x y Hxy [? Hx]; split; [by apply Hxy|intros n' ?].
rewrite <-(proj2 Hxy n'), (Hx n') by eauto using agree_valid_le.
by apply dist_le with n; try apply Hxy.
* by intros n x1 x2 Hx y1 y2 Hy.
* by intros x y1 y2 Hy ?; do 2 red; rewrite <-Hy.
* intros; apply agree_valid_0.
* intros n x ?; apply agree_valid_le with (S n); auto.
* intros x; split; [apply agree_valid_0|].
by intros n'; rewrite Nat.le_0_r; intros ->.
* intros n x [? Hx]; split; [by apply agree_valid_S|intros n' ?].
rewrite (Hx n') by auto; symmetry; apply dist_le with n; try apply Hx; auto.
* intros x; apply agree_idempotent.
* intros x y; change (x y x (x y)).
by rewrite (associative _), agree_idempotent.
* by intros x y n (?&?&?).
* by intros x y n [(?&?&?) ?].
* by intros x y; do 2 red; rewrite (associative _), agree_idempotent.
Qed.
Program Definition to_agree (x : A) : agree A :=
{| agree_car n := x; agree_is_valid n := True |}.
Solve Obligations with done.
Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree.
Proof. intros x1 x2 Hx; split; naive_solver eauto using @dist_le. Qed.
Lemma agree_op_inv (x y1 y2 : agree A) n :
validN n x x ={n}= y1 y2 y1 ={n}= y2.
Proof. by intros ? Hxy; apply Hxy. Qed.
Proof. by intros [??] Hxy; apply Hxy. Qed.
Global Instance agree_extend : CMRAExtend (agree A).
Proof.
intros x y1 y2 n ? Hx; exists (x,x); simpl; split.
* by rewrite agree_idempotent.
* by rewrite Hx, (agree_op_inv x y1 y2), agree_idempotent by done.
Qed.
Program Definition to_agree (x : A) : agree A :=
{| agree_car n := x; agree_is_valid n := True |}.
Solve Obligations with done.
Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree.
Proof. intros x1 x2 Hx; split; naive_solver eauto using @dist_le. Qed.
Lemma agree_car_ne (x y : agree A) n : validN n x x ={n}= y x n ={n}= y n.
Proof. by intros [??] Hxy; apply Hxy. Qed.
Lemma agree_cauchy (x : agree A) n i : n i validN i x x n ={n}= x i.
Proof. by intros ? [? Hx]; apply Hx. Qed.
Lemma agree_to_agree_inj (x y : agree A) a n :
validN n x x ={n}= to_agree a y x n ={n}= a.
Proof.
by intros; transitivity ((to_agree a y) n); [by apply agree_car_ne|].
Qed.
End agree.
Canonical Structure agreeRA (A : cofeT) : cmraT := CMRAT (agree A).
Section agree_map.
Context `{Cofe A, Cofe B} (f: A B) `{Hf: n, Proper (dist n ==> dist n) f}.
Context `{Cofe A,Cofe B} (f : A B) `{Hf: n, Proper (dist n ==> dist n) f}.
Program Definition agree_map (x : agree A) : agree B :=
{| agree_car n := f (x n); agree_is_valid n := validN n x |}.
Next Obligation. apply agree_valid_0. Qed.
Next Obligation. by intros x n ?; apply agree_valid_S. Qed.
Next Obligation. by intros x n i ??; simpl; rewrite (agree_cauchy x n i). Qed.
{| agree_car n := f (x n); agree_is_valid := agree_is_valid x |}.
Solve Obligations with auto using agree_valid_0, agree_valid_S.
Global Instance agree_map_ne n : Proper (dist n ==> dist n) agree_map.
Proof. by intros x1 x2 Hx; split; simpl; intros; [apply Hx|apply Hf, Hx]. Qed.
Global Instance agree_map_proper: Proper (()==>()) agree_map := ne_proper _.
Global Instance agree_map_preserving : CMRAPreserving agree_map.
Proof.
split; [|by intros n ?].
split; [|by intros n x [? Hx]; split; simpl; [|by intros n' ?; rewrite Hx]].
intros x y; unfold included, agree_included; intros Hy; rewrite Hy.
split; [split|done].
* by intros (?&?&Hxy); repeat (intro || split);
......@@ -147,6 +152,17 @@ Section agree_map.
try apply Hxy; eauto using agree_valid_le.
Qed.
End agree_map.
Lemma agree_map_id `{Cofe A} (x : agree A) : agree_map id x = x.
Proof. by destruct x. Qed.
Lemma agree_map_compose `{Cofe A, Cofe B, Cofe C} (f : A B) (g : B C)
(x : agree A) : agree_map (g f) x = agree_map g (agree_map f x).
Proof. done. Qed.
Canonical Structure agreeRA (A : cofeT) : cmraT := CMRAT (agree A).
Definition agreeRA_map {A B} (f : A -n> B) : agreeRA A -n> agreeRA B :=
CofeMor (agree_map f : agreeRA A agreeRA B).
Instance agreeRA_map_ne A B n : Proper (dist n ==> dist n) (@agreeRA_map A B).
Proof.
intros f g Hfg x; split; simpl; intros; [done|].
by apply dist_le with n; try apply Hfg.
Qed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment