Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Paolo G. Giarrusso
iris
Commits
b61305ae
Commit
b61305ae
authored
6 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
factor out entails_eq_True as its own lemma
parent
3b93f77c
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/bi/derived_laws_bi.v
+12
-7
12 additions, 7 deletions
theories/bi/derived_laws_bi.v
with
12 additions
and
7 deletions
theories/bi/derived_laws_bi.v
+
12
−
7
View file @
b61305ae
...
...
@@ -113,6 +113,16 @@ Lemma True_intro P : P ⊢ True.
Proof
.
by
apply
pure_intro
.
Qed
.
Hint
Immediate
False_elim
.
Lemma
entails_eq_True
P
Q
:
(
P
⊢
Q
)
↔
((
P
→
Q
)
%
I
≡
True
%
I
)
.
Proof
.
split
=>
EQ
.
-
apply
bi
.
equiv_spec
;
split
;
[
by
apply
True_intro
|]
.
apply
impl_intro_r
.
rewrite
and_elim_r
//.
-
trans
(
P
∧
True
)
%
I
.
+
apply
and_intro
;
first
done
.
by
apply
pure_intro
.
+
rewrite
-
EQ
impl_elim_r
.
done
.
Qed
.
Lemma
and_mono
P
P'
Q
Q'
:
(
P
⊢
Q
)
→
(
P'
⊢
Q'
)
→
P
∧
P'
⊢
Q
∧
Q'
.
Proof
.
auto
.
Qed
.
Lemma
and_mono_l
P
P'
Q
:
(
P
⊢
Q
)
→
P
∧
P'
⊢
Q
∧
P'
.
...
...
@@ -1428,13 +1438,8 @@ Qed.
Lemma
limit_preserving_entails
{
A
:
ofeT
}
`{
Cofe
A
}
(
Φ
Ψ
:
A
→
PROP
)
:
NonExpansive
Φ
→
NonExpansive
Ψ
→
LimitPreserving
(
λ
x
,
Φ
x
⊢
Ψ
x
)
.
Proof
.
intros
HΦ
HΨ
c
Hc
.
assert
(
Heq
:
∀
P
Q
:
PROP
,
(
∀
n
,
(
P
→
Q
)
%
I
≡
{
n
}
≡
True
%
I
)
↔
(
P
-∗
Q
))
.
{
intros
??
.
rewrite
-
equiv_dist
.
split
=>
EQ
.
-
by
rewrite
-
(
left_id
True
%
I
bi_and
P
)
-
EQ
impl_elim_l
.
-
apply
bi
.
equiv_spec
;
split
;
[
by
apply
True_intro
|]
.
apply
impl_intro_l
.
by
rewrite
right_id
.
}
apply
Heq
=>
n
.
rewrite
conv_compl
.
by
apply
Heq
.
intros
HΦ
HΨ
c
Hc
.
apply
entails_eq_True
,
equiv_dist
=>
n
.
rewrite
conv_compl
.
apply
equiv_dist
,
entails_eq_True
.
done
.
Qed
.
Lemma
limit_preserving_equiv
{
A
:
ofeT
}
`{
Cofe
A
}
(
Φ
Ψ
:
A
→
PROP
)
:
NonExpansive
Φ
→
NonExpansive
Ψ
→
LimitPreserving
(
λ
x
,
Φ
x
⊣⊢
Ψ
x
)
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment