Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Paolo G. Giarrusso
iris
Commits
c371a4a5
Commit
c371a4a5
authored
8 years ago
by
Joseph Tassarotti
Browse files
Options
Downloads
Patches
Plain Diff
Direct (double negated) adequacy proof for nnvs modality
parent
54bd5cd8
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
algebra/double_negation.v
+49
-7
49 additions, 7 deletions
algebra/double_negation.v
with
49 additions
and
7 deletions
algebra/double_negation.v
+
49
−
7
View file @
c371a4a5
...
...
@@ -322,17 +322,59 @@ Proof.
unseal
.
rewrite
right_id
in
Hvs
*
;
naive_solver
.
Qed
.
(* Nevertheless, we can prove a weaker form of adequacy (which is equvialent to adequacy
under classical axioms) directly without passing through the proofs for rvs: *)
Lemma
adequacy_helper1
P
n
k
x
:
✓
{
S
n
+
k
}
x
→
¬¬
(
Nat
.
iter
(
S
n
)
(
λ
P
,
|
=
n
=>
▷
P
)
%
I
P
(
S
n
+
k
)
x
)
→
¬¬
(
∃
x'
,
✓
{
n
+
k
}
(
x'
)
∧
Nat
.
iter
n
(
λ
P
,
|
=
n
=>
▷
P
)
%
I
P
(
n
+
k
)
(
x'
))
.
Proof
.
revert
k
P
x
.
induction
n
.
-
rewrite
/
uPred_nnvs
.
unseal
=>
k
P
x
Hx
Hf1
Hf2
.
eapply
Hf1
.
intros
Hf3
.
eapply
(
laterN_big
(
S
k
)
(
S
k
));
eauto
.
specialize
(
Hf3
(
S
k
)
(
S
k
)
∅
)
.
rewrite
right_id
in
Hf3
*.
unseal
.
intros
Hf3
.
eapply
Hf3
;
eauto
.
intros
???
Hx'
.
rewrite
left_id
in
Hx'
*=>
Hx'
.
unseal
.
assert
(
n'
<
S
k
∨
n'
=
S
k
)
as
[|]
by
omega
.
*
intros
.
move
:(
laterN_small
n'
(
S
k
)
x'
False
)
.
rewrite
//=.
unseal
.
intros
Hsmall
.
eapply
Hsmall
;
eauto
.
*
subst
.
intros
.
exfalso
.
eapply
Hf2
.
exists
x'
.
split
;
eauto
using
cmra_validN_S
.
-
intros
k
P
x
Hx
.
rewrite
?Nat_iter_S_r
.
replace
(
S
(
S
n
)
+
k
)
with
(
S
n
+
(
S
k
))
by
omega
.
replace
(
S
n
+
k
)
with
(
n
+
(
S
k
))
by
omega
.
intros
.
eapply
IHn
.
replace
(
S
n
+
S
k
)
with
(
S
(
S
n
)
+
k
)
by
omega
.
eauto
.
rewrite
?Nat_iter_S_r
.
eauto
.
Qed
.
(* Questions:
1) Can we prove a weakened form of adequacy for nnvs directly, such as :
Lemma
adequacy_helper2
P
n
k
x
:
✓
{
S
n
+
k
}
x
→
¬¬
(
Nat
.
iter
(
S
n
)
(
λ
P
,
|
=
n
=>
▷
P
)
%
I
P
(
S
n
+
k
)
x
)
→
¬¬
(
∃
x'
,
✓
{
k
}
(
x'
)
∧
Nat
.
iter
0
(
λ
P
,
|
=
n
=>
▷
P
)
%
I
P
k
(
x'
))
.
Proof
.
revert
x
.
induction
n
.
-
specialize
(
adequacy_helper1
P
0
)
.
rewrite
//=.
naive_solver
.
-
intros
??
Hfal
%
adequacy_helper1
;
eauto
using
cmra_validN_S
.
intros
Hfal'
.
eapply
Hfal
.
intros
(
x''
&
?
&
?)
.
eapply
IHn
;
eauto
.
Qed
.
Lemma adequacy' φ n : (True ⊢ Nat.iter n (λ P, |=n=> ▷ P) (■ φ)) → ¬¬ φ.
Lemma
adequacy
φ
n
:
(
True
⊢
Nat
.
iter
n
(
λ
P
,
|
=
n
=>
▷
P
)
(
■
φ
))
→
¬¬
φ
.
Proof
.
cut
(
∀
x
,
✓
{
S
n
}
x
→
Nat
.
iter
n
(
λ
P
,
|
=
n
=>
▷
P
)
%
I
(
■
φ
)
%
I
(
S
n
)
x
→
¬¬
φ
)
.
{
intros
help
H
.
eapply
(
help
∅
);
eauto
using
ucmra_unit_validN
.
eapply
H
;
try
unseal
;
eauto
using
ucmra_unit_validN
.
red
;
rewrite
//=.
}
destruct
n
.
-
rewrite
//=
;
unseal
;
auto
.
-
intros
???
Hfal
.
eapply
(
adequacy_helper2
_
n
1
);
(
replace
(
S
n
+
1
)
with
(
S
(
S
n
))
by
omega
);
eauto
.
unseal
.
intros
(
x'
&
?
&
Hphi
)
.
simpl
in
*.
eapply
Hfal
.
auto
.
Qed
.
One idea may be to prove a limited adequacy theorem for each
nnvs_k and use the limiting argument we did for transitivity.
(* Open question:
2)
Do the basic properties of the |=r=> modality (rvs_intro, rvs_mono, rvs_trans, rvs_frame_r,
Do the basic properties of the |=r=> modality (rvs_intro, rvs_mono, rvs_trans, rvs_frame_r,
rvs_ownM_updateP, and adequacy) uniquely characterize |=r=>?
*)
*)
End
rvs_nnvs
.
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment