Skip to content
Snippets Groups Projects
Commit f56f3834 authored by Ralf Jung's avatar Ralf Jung
Browse files

add big_sepS_elem_of_acc_impl

parent 69cd8d4f
No related branches found
No related tags found
No related merge requests found
......@@ -1782,6 +1782,22 @@ Section gset.
by setoid_rewrite wand_elim_l.
Qed.
Lemma big_sepS_elem_of_acc_impl x Φ X :
x X
([ set] y X, Φ y) -∗ Φ x
( Ψ, Ψ x -∗ ( y, y X y x Φ y -∗ Ψ y) -∗ ([ set] y X, Ψ y)).
Proof.
intros Helem. rewrite big_sepS_delete //. apply sep_mono_r.
apply forall_intro=>Ψ.
rewrite (big_sepS_impl Φ Ψ).
rewrite wand_curry comm -wand_curry. apply wand_intro_r.
assert ( a : A, a X a x a X {[x]}) as Hiff by set_solver.
setoid_rewrite Hiff.
rewrite wand_elim_l.
apply wand_intro_l.
rewrite -big_sepS_delete //.
Qed.
Lemma big_sepS_dup P `{!Affine P} X :
(P -∗ P P) -∗ P -∗ [ set] x X, P.
Proof.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment