Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Paolo G. Giarrusso
iris
Commits
fbedbd17
Commit
fbedbd17
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
remove some unused typeclasses and notation: EquivE and SubsetEqE
parent
5f393110
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
prelude/base.v
+0
-42
0 additions, 42 deletions
prelude/base.v
with
0 additions
and
42 deletions
prelude/base.v
+
0
−
42
View file @
fbedbd17
...
...
@@ -163,17 +163,6 @@ Notation "X ≢ Y":= (¬X ≡ Y) (at level 70, no associativity) : C_scope.
Notation
"( X ≢)"
:=
(
λ
Y
,
X
≢
Y
)
(
only
parsing
)
:
C_scope
.
Notation
"(≢ X )"
:=
(
λ
Y
,
Y
≢
X
)
(
only
parsing
)
:
C_scope
.
Class
EquivE
E
A
:=
equivE
:
E
→
relation
A
.
Instance
:
Params
(
@
equivE
)
4
.
Notation
"X ≡{ Γ } Y"
:=
(
equivE
Γ
X
Y
)
(
at
level
70
,
format
"X ≡{ Γ } Y"
)
:
C_scope
.
Notation
"(≡{ Γ } )"
:=
(
equivE
Γ
)
(
only
parsing
,
Γ
at
level
1
)
:
C_scope
.
Notation
"X ≡{ Γ1 , Γ2 , .. , Γ3 } Y"
:=
(
equivE
(
pair
.
.
(
Γ1
,
Γ2
)
.
.
Γ3
)
X
Y
)
(
at
level
70
,
format
"'[' X ≡{ Γ1 , Γ2 , .. , Γ3 } '/' Y ']'"
)
:
C_scope
.
Notation
"(≡{ Γ1 , Γ2 , .. , Γ3 } )"
:=
(
equivE
(
pair
.
.
(
Γ1
,
Γ2
)
.
.
Γ3
))
(
only
parsing
,
Γ1
at
level
1
)
:
C_scope
.
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
...
...
@@ -211,8 +200,6 @@ equality. *)
Instance
equiv_default_relation
`{
Equiv
A
}
:
DefaultRelation
(
≡
)
|
3
.
Hint
Extern
0
(
?x
≡
?y
)
=>
reflexivity
.
Hint
Extern
0
(_
≡
_)
=>
symmetry
;
assumption
.
Hint
Extern
0
(
?x
≡
{_}
?y
)
=>
reflexivity
.
Hint
Extern
0
(_
≡
{_}
_)
=>
symmetry
;
assumption
.
(** ** Operations on collections *)
(** We define operational type classes for the traditional operations and
...
...
@@ -292,35 +279,6 @@ Hint Extern 0 (_ ⊆ _) => reflexivity.
Hint
Extern
0
(_
⊆*
_)
=>
reflexivity
.
Hint
Extern
0
(_
⊆**
_)
=>
reflexivity
.
Class
SubsetEqE
E
A
:=
subseteqE
:
E
→
relation
A
.
Instance
:
Params
(
@
subseteqE
)
4
.
Notation
"X ⊆{ Γ } Y"
:=
(
subseteqE
Γ
X
Y
)
(
at
level
70
,
format
"X ⊆{ Γ } Y"
)
:
C_scope
.
Notation
"(⊆{ Γ } )"
:=
(
subseteqE
Γ
)
(
only
parsing
,
Γ
at
level
1
)
:
C_scope
.
Notation
"X ⊈{ Γ } Y"
:=
(
¬
X
⊆
{
Γ
}
Y
)
(
at
level
70
,
format
"X ⊈{ Γ } Y"
)
:
C_scope
.
Notation
"(⊈{ Γ } )"
:=
(
λ
X
Y
,
X
⊈
{
Γ
}
Y
)
(
only
parsing
,
Γ
at
level
1
)
:
C_scope
.
Notation
"Xs ⊆{ Γ }* Ys"
:=
(
Forall2
(
⊆
{
Γ
})
Xs
Ys
)
(
at
level
70
,
format
"Xs ⊆{ Γ }* Ys"
)
:
C_scope
.
Notation
"(⊆{ Γ }* )"
:=
(
Forall2
(
⊆
{
Γ
}))
(
only
parsing
,
Γ
at
level
1
)
:
C_scope
.
Notation
"X ⊆{ Γ1 , Γ2 , .. , Γ3 } Y"
:=
(
subseteqE
(
pair
.
.
(
Γ1
,
Γ2
)
.
.
Γ3
)
X
Y
)
(
at
level
70
,
format
"'[' X ⊆{ Γ1 , Γ2 , .. , Γ3 } '/' Y ']'"
)
:
C_scope
.
Notation
"(⊆{ Γ1 , Γ2 , .. , Γ3 } )"
:=
(
subseteqE
(
pair
.
.
(
Γ1
,
Γ2
)
.
.
Γ3
))
(
only
parsing
,
Γ1
at
level
1
)
:
C_scope
.
Notation
"X ⊈{ Γ1 , Γ2 , .. , Γ3 } Y"
:=
(
¬
X
⊆
{
pair
.
.
(
Γ1
,
Γ2
)
.
.
Γ3
}
Y
)
(
at
level
70
,
format
"X ⊈{ Γ1 , Γ2 , .. , Γ3 } Y"
)
:
C_scope
.
Notation
"(⊈{ Γ1 , Γ2 , .. , Γ3 } )"
:=
(
λ
X
Y
,
X
⊈
{
pair
.
.
(
Γ1
,
Γ2
)
.
.
Γ3
}
Y
)
(
only
parsing
)
:
C_scope
.
Notation
"Xs ⊆{ Γ1 , Γ2 , .. , Γ3 }* Ys"
:=
(
Forall2
(
⊆
{
pair
.
.
(
Γ1
,
Γ2
)
.
.
Γ3
})
Xs
Ys
)
(
at
level
70
,
format
"Xs ⊆{ Γ1 , Γ2 , .. , Γ3 }* Ys"
)
:
C_scope
.
Notation
"(⊆{ Γ1 , Γ2 , .. , Γ3 }* )"
:=
(
Forall2
(
⊆
{
pair
.
.
(
Γ1
,
Γ2
)
.
.
Γ3
}))
(
only
parsing
,
Γ1
at
level
1
)
:
C_scope
.
Hint
Extern
0
(_
⊆
{_}
_)
=>
reflexivity
.
Definition
strict
{
A
}
(
R
:
relation
A
)
:
relation
A
:=
λ
X
Y
,
R
X
Y
∧
¬
R
Y
X
.
Instance
:
Params
(
@
strict
)
2
.
Infix
"⊂"
:=
(
strict
(
⊆
))
(
at
level
70
)
:
C_scope
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment