Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
Require Import workload Vbase job task schedule task_arrival response_time
schedulability util_divround util_lemmas
ssreflect ssrbool eqtype ssrnat seq div fintype bigop path.
Module WorkloadBoundFP.
Import Job SporadicTaskset Schedule SporadicTaskArrival ResponseTime Schedulability Workload.
Section WorkloadBound.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task -> nat.
Variable task_period: sporadic_task -> nat.
Variable tsk: sporadic_task.
Variable R_tsk: time. (* Known response-time bound for the task *)
Variable delta: time. (* Length of the interval *)
(* Bound on the number of jobs that execute completely in the interval *)
Definition max_jobs :=
div_floor (delta + R_tsk - task_cost tsk) (task_period tsk).
(* Bertogna and Cirinei's bound on the workload of a task in an interval of length delta *)
Definition W :=
let e_k := (task_cost tsk) in
let p_k := (task_period tsk) in
minn e_k (delta + R_tsk - e_k - max_jobs * p_k) + max_jobs * e_k.
End WorkloadBound.
Section BasicLemmas.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task -> nat.
Variable task_period: sporadic_task -> nat.
(* Let tsk be any task...*)
Variable tsk: sporadic_task.
(* ...with period > 0. *)
Hypothesis H_period_positive: task_period tsk > 0.
(* Let R1 <= R2 be two response-time bounds that
are larger than the cost of the tsk. *)
Variable R1 R2: time.
Hypothesis H_R_lower_bound: R1 >= task_cost tsk.
Hypothesis H_R1_le_R2: R1 <= R2.
Let workload_bound := W task_cost task_period tsk.
(* Then, Bertogna and Cirinei's workload bound is monotonically increasing. *)
Lemma W_monotonic :
forall t1 t2,
t1 <= t2 ->
workload_bound R1 t1 <= workload_bound R2 t2.
Proof.
intros t1 t2 LEt.
unfold workload_bound, W, max_jobs, div_floor; rewrite 2!subndiv_eq_mod.
set e := task_cost tsk; set p := task_period tsk.
set x1 := t1 + R1.
set x2 := t2 + R2.
set delta := x2 - x1.
rewrite -[x2](addKn x1) -addnBA; fold delta;
last by apply leq_add.
induction delta; first by rewrite addn0 leqnn.
{
apply (leq_trans IHdelta).
(* Prove special case for p <= 1. *)
destruct (leqP p 1) as [LTp | GTp].
{
rewrite leq_eqVlt in LTp; move: LTp => /orP LTp; des;
last by rewrite ltnS in LTp; apply (leq_trans H_period_positive) in LTp.
{
move: LTp => /eqP LTp; rewrite LTp 2!modn1 2!divn1.
rewrite leq_add2l leq_mul2r; apply/orP; right.
by rewrite leq_sub2r // leq_add2l.
}
}
(* Harder case: p > 1. *)
{
assert (EQ: (x1 + delta.+1 - e) = (x1 + delta - e).+1).
{
rewrite -[(x1 + delta - e).+1]addn1.
rewrite [_+1]addnC addnBA; last first.
{
apply (leq_trans H_R_lower_bound).
by rewrite -addnA addnC -addnA leq_addr.
}
by rewrite [1 + _]addnC -addnA addn1.
} rewrite -> EQ in *; clear EQ.
have DIV := divSn_cases (x1 + delta - e) p GTp; des.
{
rewrite DIV leq_add2r leq_min; apply/andP; split;
first by rewrite geq_minl.
by apply leq_trans with (n := (x1 + delta - e) %% p);
[by rewrite geq_minr | by rewrite -DIV0 addn1 leqnSn].
}
{
rewrite -[minn e _]add0n -addnA; apply leq_add; first by ins.
rewrite -DIV mulnDl mul1n [_ + e]addnC.
by apply leq_add; [by rewrite geq_minl | by ins].
}
}
}
Qed.
End BasicLemmas.
Section ProofWorkloadBound.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task -> nat.
Variable task_period: sporadic_task -> nat.
Variable task_deadline: sporadic_task -> nat.
Context {Job: eqType}.
Variable job_cost: Job -> nat.
Variable job_task: Job -> sporadic_task.
Variable job_deadline: Job -> nat.
Variable arr_seq: arrival_sequence Job.
(* Assume that all jobs have valid parameters *)
Hypothesis H_jobs_have_valid_parameters :
forall (j: JobIn arr_seq),
valid_sporadic_job task_cost task_deadline job_cost job_deadline job_task j.
Variable num_cpus: nat.
Variable rate: Job -> processor num_cpus -> nat.
Variable schedule_of_platform: schedule num_cpus arr_seq -> Prop.
(* Assume any schedule of a given platform. *)
Variable sched: schedule num_cpus arr_seq.
Hypothesis sched_of_platform: schedule_of_platform sched.
(* Assumption: jobs only execute if they arrived.
This is used to eliminate jobs that arrive after end of the interval t1 + delta. *)
Hypothesis H_jobs_must_arrive_to_execute:
jobs_must_arrive_to_execute sched.
(* Assumption: jobs do not execute after they completed.
This is used to eliminate jobs that complete before the start of the interval t1. *)
Hypothesis H_completed_jobs_dont_execute:
completed_jobs_dont_execute job_cost rate sched.
(* Assumptions:
1) A job does not execute in parallel.
2) The service rate of the platform is at most 1.
This is required to use interval lengths as a measure of service. *)
Hypothesis H_no_parallelism:
jobs_dont_execute_in_parallel sched.
Hypothesis H_rate_at_most_one :
forall j cpu, rate j cpu <= 1.
(* Assumption: sporadic task model.
This is necessary to conclude that consecutive jobs ordered by arrival times
are separated by at least 'period' times units. *)
Hypothesis H_sporadic_tasks: sporadic_task_model task_period arr_seq job_task.
(* Before starting the proof, let's give simpler names to the definitions. *)
Let job_has_completed_by := completed job_cost rate sched.
Let no_deadline_misses_by (tsk: sporadic_task) (t: time) :=
task_misses_no_deadline_before job_cost job_deadline job_task
rate sched tsk t.
Let workload_of (tsk: sporadic_task) (t1 t2: time) :=
workload job_task rate sched tsk t1 t2.
(* Now we define the theorem. Let tsk be any task in the taskset. *)
Variable tsk: sporadic_task.
(* Assumption: the task must have valid parameters:
a) period > 0 (used in divisions)
b) deadline of the jobs = deadline of the task
c) cost <= period
(used to prove that the distance between the first and last
jobs is at least (cost + n*period), where n is the number
of middle jobs. If cost >> period, the claim does not hold
for every task set. *)
Hypothesis H_valid_task_parameters:
is_valid_sporadic_task task_cost task_period task_deadline tsk.
(* Assumption: the task must have a restricted deadline.
This is required to prove that n_k (max_jobs) from Bertogna
and Cirinei's formula accounts for at least the number of
middle jobs (i.e., number of jobs - 2 in the worst case). *)
Hypothesis H_restricted_deadline: task_deadline tsk <= task_period tsk.
(* Consider an interval [t1, t1 + delta), with no deadline misses. *)
Variable t1 delta: time.
Hypothesis H_no_deadline_misses_during_interval: no_deadline_misses_by tsk (t1 + delta).
(* Assume that a response-time bound R_tsk for that task in any
schedule of this processor platform is also given,
such that R_tsk >= task_cost tsk. *)
Variable R_tsk: time.
Hypothesis H_response_time_ge_cost: R_tsk >= task_cost tsk.
Hypothesis H_response_time_bound :
forall (j: JobIn arr_seq),
job_task j = tsk ->
job_arrival j + R_tsk < t1 + delta ->
job_has_completed_by j (job_arrival j + R_tsk).
Section BertognaCirinei.
(* Then the workload of the task in the interval is bounded by W. *)
Let workload_bound := W task_cost task_period.
Theorem workload_bounded_by_W :
workload_of tsk t1 (t1 + delta) <= workload_bound tsk R_tsk delta.
Proof.
rename H_jobs_have_valid_parameters into job_properties,
H_no_deadline_misses_during_interval into no_dl_misses,
H_valid_task_parameters into task_properties.
unfold valid_sporadic_job, valid_realtime_job, restricted_deadline_model,
valid_sporadic_taskset, is_valid_sporadic_task, sporadic_task_model,
workload_of, no_deadline_misses_by, workload_bound, W in *; ins; des.
(* Simplify names *)
set t2 := t1 + delta.
set n_k := max_jobs task_cost task_period tsk R_tsk delta.
(* Use the definition of workload based on list of jobs. *)
rewrite workload_eq_workload_joblist; unfold workload_joblist.
(* Identify the subset of jobs that actually cause interference *)
set interfering_jobs :=
filter (fun (x: JobIn arr_seq) =>
(job_task x == tsk) && (service_during rate sched x t1 t2 != 0))
(jobs_scheduled_between sched t1 t2).
(* Remove the elements that we don't care about from the sum *)
assert (SIMPL:
\sum_(i <- jobs_scheduled_between sched t1 t2 | job_task i == tsk)
service_during rate sched i t1 t2 =
\sum_(i <- interfering_jobs) service_during rate sched i t1 t2).
{
unfold interfering_jobs.
rewrite (bigID (fun x => service_during rate sched x t1 t2 == 0)) /=.
rewrite (eq_bigr (fun x => 0)); last by move => j_i /andP JOBi; des; apply /eqP.
rewrite big_const_seq iter_addn mul0n add0n add0n.
by rewrite big_filter.
} rewrite SIMPL; clear SIMPL.
(* Remember that for any job of tsk, service <= task_cost tsk *)
assert (LTserv: forall j_i (INi: j_i \in interfering_jobs),
service_during rate sched j_i t1 t2 <= task_cost tsk).
{
ins; move: INi; rewrite mem_filter; move => /andP xxx; des.
move: xxx; move => /andP JOBi; des; clear xxx0 JOBi0.
have PROP := job_properties j_i; des.
move: JOBi => /eqP JOBi; rewrite -JOBi.
apply leq_trans with (n := job_cost j_i); last by ins.
by apply service_interval_le_cost.
}
(* Order the sequence of interfering jobs by arrival time, so that
we can identify the first and last jobs. *)
set order := fun (x y: JobIn arr_seq) => job_arrival x <= job_arrival y.
set sorted_jobs := (sort order interfering_jobs).
assert (SORT: sorted order sorted_jobs);
first by apply sort_sorted; unfold total, order; ins; apply leq_total.
rewrite (eq_big_perm sorted_jobs) /=; last by rewrite -(perm_sort order).
(* Remember that both sequences have the same set of elements *)
assert (INboth: forall x, (x \in interfering_jobs) = (x \in sorted_jobs)).
by apply perm_eq_mem; rewrite -(perm_sort order).
(* Find some dummy element to use in the nth function *)
destruct (size sorted_jobs == 0) eqn:SIZE0;
first by move: SIZE0 =>/eqP SIZE0; rewrite (size0nil SIZE0) big_nil.
apply negbT in SIZE0; rewrite -lt0n in SIZE0.
assert (EX: exists elem: JobIn arr_seq, True); des.
destruct sorted_jobs; [by rewrite ltn0 in SIZE0 | by exists s].
clear EX SIZE0.
(* Remember that the jobs are ordered by arrival. *)
assert (ALL: forall i (LTsort: i < (size sorted_jobs).-1),
order (nth elem sorted_jobs i) (nth elem sorted_jobs i.+1)).
by destruct sorted_jobs; [by ins| by apply/pathP; apply SORT].
(* Now we start the proof. First, we show that the workload bound
holds if n_k is no larger than the number of interferings jobs. *)
destruct (size sorted_jobs <= n_k) eqn:NUM.
{
rewrite -[\sum_(_ <- _ | _) _]add0n leq_add //.
apply leq_trans with (n := \sum_(x <- sorted_jobs) task_cost tsk);
last by rewrite big_const_seq iter_addn addn0 mulnC leq_mul2r; apply/orP; right.
{
rewrite [\sum_(_ <- _) service_during _ _ _ _ _]big_seq_cond.
rewrite [\sum_(_ <- _) task_cost _]big_seq_cond.
by apply leq_sum; intros j_i; move/andP => xxx; des; apply LTserv; rewrite INboth.
}
}
apply negbT in NUM; rewrite -ltnNge in NUM.
(* Now we index the sum to access the first and last elements. *)
rewrite (big_nth elem).
(* First and last only exist if there are at least 2 jobs. Thus, we must show
that the bound holds for the empty list. *)
destruct (size sorted_jobs) eqn:SIZE; first by rewrite big_geq.
rewrite SIZE.
(* Let's derive some properties about the first element. *)
exploit (mem_nth elem); last intros FST.
by instantiate (1:= sorted_jobs); instantiate (1 := 0); rewrite SIZE.
move: FST; rewrite -INboth mem_filter; move => /andP FST; des.
move: FST => /andP FST; des; move: FST => /eqP FST.
rename FST0 into FSTin, FST into FSTtask, FST1 into FSTserv.
(* Now we show that the bound holds for a singleton set of interfering jobs. *)
destruct n.
{
destruct n_k; last by ins.
{
rewrite 2!mul0n addn0 subn0 big_nat_recl // big_geq // addn0.
rewrite leq_min; apply/andP; split.
{
apply leq_trans with (n := job_cost (nth elem sorted_jobs 0));
first by apply service_interval_le_cost.
by rewrite -FSTtask; have PROP := job_properties (nth elem sorted_jobs 0); des.
}
{
rewrite -addnBA; last by ins.
rewrite -[service_during _ _ _ _ _]addn0.
apply leq_add; last by ins.
apply leq_trans with (n := \sum_(t1 <= t < t2) 1).
by apply leq_sum; ins; apply service_at_le_max_rate.
by unfold t2; rewrite big_const_nat iter_addn mul1n addn0 addnC -addnBA// subnn addn0.
}
}
} rewrite [nth]lock /= -lock in ALL.
(* Knowing that we have at least two elements, we take first and last out of the sum *)
rewrite [nth]lock big_nat_recl // big_nat_recr // /= -lock.
rewrite addnA addnC addnA.
set j_fst := (nth elem sorted_jobs 0).
set j_lst := (nth elem sorted_jobs n.+1).
(* Now we infer some facts about how first and last are ordered in the timeline *)
assert (INfst: j_fst \in interfering_jobs).
by unfold j_fst; rewrite INboth; apply mem_nth; destruct sorted_jobs; ins.
move: INfst; rewrite mem_filter; move => /andP INfst; des.
move: INfst => /andP INfst; des.
assert (AFTERt1: t1 <= job_arrival j_fst + R_tsk).
{
rewrite leqNgt; apply /negP; unfold not; intro LTt1.
move: INfst1 => /eqP INfst1; apply INfst1.
apply (sum_service_after_job_rt_zero job_cost) with (R := R_tsk);
try (by done); last by apply ltnW.
apply H_response_time_bound; first by apply/eqP.
by apply leq_trans with (n := t1); last by apply leq_addr.
}
assert (BEFOREt2: job_arrival j_lst < t2).
{
rewrite leqNgt; apply/negP; unfold not; intro LT2.
assert (LTsize: n.+1 < size sorted_jobs).
by destruct sorted_jobs; ins; rewrite SIZE; apply ltnSn.
apply (mem_nth elem) in LTsize; rewrite -INboth in LTsize.
rewrite -/interfering_jobs mem_filter in LTsize.
move: LTsize => /andP [LTsize _]; des.
move: LTsize => /andP [_ SERV].
move: SERV => /eqP SERV; apply SERV.
by unfold service_during; rewrite sum_service_before_arrival.
}
(* Next, we upper-bound the service of the first and last jobs using their arrival times. *)
assert (BOUNDend: service_during rate sched j_fst t1 t2 +
service_during rate sched j_lst t1 t2 <=
(job_arrival j_fst + R_tsk - t1) + (t2 - job_arrival j_lst)).
{
apply leq_add; unfold service_during.
{
rewrite -[_ + _ - _]mul1n -[1*_]addn0 -iter_addn -big_const_nat.
apply leq_trans with (n := \sum_(t1 <= t < job_arrival j_fst + R_tsk)
service_at rate sched j_fst t);
last by apply leq_sum; ins; apply service_at_le_max_rate.
destruct (job_arrival j_fst + R_tsk < t2) eqn:LEt2; last first.
{
unfold t2; apply negbT in LEt2; rewrite -ltnNge in LEt2.
rewrite -> big_cat_nat with (n := t1 + delta) (p := job_arrival j_fst + R_tsk);
[by apply leq_addr | by apply leq_addr | by done].
}
{
rewrite -> big_cat_nat with (n := job_arrival j_fst + R_tsk); [| by ins|by apply ltnW].
rewrite -{2}[\sum_(_ <= _ < _) _]addn0 /=.
rewrite leq_add2l leqn0; apply/eqP.
apply (sum_service_after_job_rt_zero job_cost) with (R := R_tsk);
try (by done); last by apply leqnn.
by apply H_response_time_bound; first by apply/eqP.
}
}
{
rewrite -[_ - _]mul1n -[1 * _]addn0 -iter_addn -big_const_nat.
destruct (job_arrival j_lst <= t1) eqn:LT.
{
apply leq_trans with (n := \sum_(job_arrival j_lst <= t < t2)
service_at rate sched j_lst t);
first by rewrite -> big_cat_nat with (m := job_arrival j_lst) (n := t1);
[by apply leq_addl | by ins | by apply leq_addr].
by apply leq_sum; ins; apply service_at_le_max_rate.
}
{
apply negbT in LT; rewrite -ltnNge in LT.
rewrite -> big_cat_nat with (n := job_arrival j_lst); [|by apply ltnW| by apply ltnW].
rewrite /= -[\sum_(_ <= _ < _) 1]add0n; apply leq_add.
rewrite sum_service_before_arrival; [by apply leqnn | by ins | by apply leqnn].
by apply leq_sum; ins; apply service_at_le_max_rate.
}
}
}
(* Let's simplify the expression of the bound *)
assert (SUBST: job_arrival j_fst + R_tsk - t1 + (t2 - job_arrival j_lst) =
delta + R_tsk - (job_arrival j_lst - job_arrival j_fst)).
{
rewrite addnBA; last by apply ltnW.
rewrite subh1 // -addnBA; last by apply leq_addr.
rewrite addnC [job_arrival _ + _]addnC.
unfold t2; rewrite [t1 + _]addnC -[delta + t1 - _]subnBA // subnn subn0.
rewrite addnA -subnBA; first by ins.
{
unfold j_fst, j_lst; rewrite -[n.+1]add0n.
by apply prev_le_next; [by rewrite SIZE | by rewrite SIZE add0n ltnSn].
}
} rewrite SUBST in BOUNDend; clear SUBST.
(* Now we upper-bound the service of the middle jobs. *)
assert (BOUNDmid: \sum_(0 <= i < n)
service_during rate sched (nth elem sorted_jobs i.+1) t1 t2 <=
n * task_cost tsk).
{
apply leq_trans with (n := n * task_cost tsk);
last by rewrite leq_mul2l; apply/orP; right.
apply leq_trans with (n := \sum_(0 <= i < n) task_cost tsk);
last by rewrite big_const_nat iter_addn addn0 mulnC subn0.
rewrite big_nat_cond [\sum_(0 <= i < n) task_cost _]big_nat_cond.
apply leq_sum; intros i; rewrite andbT; move => /andP LT; des.
by apply LTserv; rewrite INboth mem_nth // SIZE ltnS leqW.
}
(* Conclude that the distance between first and last is at least n + 1 periods,
where n is the number of middle jobs. *)
assert (DIST: job_arrival j_lst - job_arrival j_fst >= n.+1 * (task_period tsk)).
{
assert (EQnk: n.+1=(size sorted_jobs).-1); first by rewrite SIZE.
unfold j_fst, j_lst; rewrite EQnk telescoping_sum; last by rewrite SIZE.
rewrite -[_ * _ tsk]addn0 mulnC -iter_addn -{1}[_.-1]subn0 -big_const_nat.
rewrite big_nat_cond [\sum_(0 <= i < _)(_-_)]big_nat_cond.
apply leq_sum; intros i; rewrite andbT; move => /andP LT; des.
{
(* To simplify, call the jobs 'cur' and 'next' *)
set cur := nth elem sorted_jobs i.
set next := nth elem sorted_jobs i.+1.
clear BOUNDend BOUNDmid LT LTserv j_fst j_lst
INfst INfst0 INfst1 AFTERt1 BEFOREt2 FSTserv FSTtask FSTin.
(* Show that cur arrives earlier than next *)
assert (ARRle: job_arrival cur <= job_arrival next).
{
unfold cur, next; rewrite -addn1; apply prev_le_next; first by rewrite SIZE.
by apply leq_trans with (n := i.+1); try rewrite addn1.
}
(* Show that both cur and next are in the arrival sequence *)
assert (INnth: cur \in interfering_jobs /\
next \in interfering_jobs).
rewrite 2!INboth; split.
by apply mem_nth, (ltn_trans LT0); destruct sorted_jobs; ins.
by apply mem_nth; destruct sorted_jobs; ins.
rewrite 2?mem_filter in INnth; des.
(* Use the sporadic task model to conclude that cur and next are separated
by at least (task_period tsk) units. Of course this only holds if cur != next.
Since we don't know much about the list (except that it's sorted), we must
also prove that it doesn't contain duplicates. *)
assert (CUR_LE_NEXT: job_arrival cur + task_period (job_task cur) <= job_arrival next).
{
apply H_sporadic_tasks; last by ins.
unfold cur, next, not; intro EQ; move: EQ => /eqP EQ.
rewrite nth_uniq in EQ; first by move: EQ => /eqP EQ; intuition.
by apply ltn_trans with (n := (size sorted_jobs).-1); destruct sorted_jobs; ins.
by destruct sorted_jobs; ins.
by rewrite sort_uniq -/interfering_jobs filter_uniq // undup_uniq.
by move: INnth INnth0 => /eqP INnth /eqP INnth0; rewrite INnth INnth0.
}
by rewrite subh3 // addnC; move: INnth => /eqP INnth; rewrite -INnth.
}
}
(* Prove that n_k is at least the number of the middle jobs *)
assert (NK: n_k >= n).
{
rewrite leqNgt; apply/negP; unfold not; intro LTnk.
assert (DISTmax: job_arrival j_lst - job_arrival j_fst >= delta + task_period tsk).
{
apply leq_trans with (n := n_k.+2 * task_period tsk).
{
rewrite -addn1 mulnDl mul1n leq_add2r.
apply leq_trans with (n := delta + R_tsk - task_cost tsk);
first by rewrite -addnBA //; apply leq_addr.
by apply ltnW, ltn_ceil, task_properties0.
}
by apply leq_trans with (n.+1 * task_period tsk);
[by rewrite leq_mul2r; apply/orP; right | by apply DIST].
}
rewrite <- leq_add2r with (p := job_arrival j_fst) in DISTmax.
rewrite addnC subh1 in DISTmax;
last by unfold j_fst, j_lst; rewrite -[_.+1]add0n prev_le_next // SIZE // add0n ltnS leqnn.
rewrite -subnBA // subnn subn0 in DISTmax.
rewrite [delta + task_period tsk]addnC addnA in DISTmax.
generalize BEFOREt2; move: BEFOREt2; rewrite {1}ltnNge; move => /negP BEFOREt2'.
intros BEFOREt2; apply BEFOREt2'; clear BEFOREt2'.
apply leq_trans with (n := job_arrival j_fst + task_deadline tsk + delta);
last by apply leq_trans with (n := job_arrival j_fst + task_period tsk + delta);
[rewrite leq_add2r leq_add2l; apply H_restricted_deadline | apply DISTmax].
{
(* Show that j_fst doesn't execute d_k units after its arrival. *)
unfold t2; rewrite leq_add2r; rename H_completed_jobs_dont_execute into EXEC.
unfold task_misses_no_deadline_before, job_misses_no_deadline, completed in *; des.
exploit (no_dl_misses j_fst INfst); last intros COMP.
{
(* Prove that arr_fst + d_k <= t2 *)
apply leq_ltn_trans with (n := job_arrival j_lst); last by done.
apply leq_trans with (n := job_arrival j_fst + task_period tsk + delta); last by ins.
rewrite -addnA leq_add2l -[job_deadline _]addn0.
apply leq_add; last by ins.
specialize (job_properties j_fst); des.
by rewrite job_properties1 FSTtask H_restricted_deadline.
}
rewrite leqNgt; apply/negP; unfold not; intro LTt1.
(* Now we assume that (job_arrival j_fst + d_k < t1) and reach a contradiction.
Since j_fst doesn't miss deadlines, then the service it receives between t1 and t2
equals 0, which contradicts the previous assumption that j_fst interferes in
the scheduling window. *)
clear BEFOREt2 DISTmax LTnk DIST BOUNDend BOUNDmid FSTin; move: EXEC => EXEC.
move: INfst1 => /eqP SERVnonzero; apply SERVnonzero.
{
unfold service_during; apply/eqP; rewrite -leqn0.
rewrite <- leq_add2l with (p := job_cost j_fst); rewrite addn0.
move: COMP => /eqP COMP; unfold service in COMP; rewrite -{1}COMP.
apply leq_trans with (n := service rate sched j_fst t2); last by apply EXEC.
unfold service; rewrite -> big_cat_nat with (m := 0) (p := t2) (n := t1);
[rewrite leq_add2r /= | by ins | by apply leq_addr].
rewrite -> big_cat_nat with (p := t1) (n := job_arrival j_fst + job_deadline j_fst);
[| by ins | by apply ltnW; specialize (job_properties j_fst); des;
rewrite job_properties1 FSTtask].
by rewrite /= -{1}[\sum_(_ <= _ < _) _]addn0 leq_add2l.
}
}
}
(* With the facts that we derived, we can now prove the workload bound.
There are two cases to be analyze since n <= n_k < n + 2, where n is the number
of middle jobs. *)
move: NK; rewrite leq_eqVlt orbC leq_eqVlt; move => /orP NK; des.
move: NK => /orP NK; des; last by rewrite ltnS leqNgt NK in NUM.
{
(* Case 1: n_k = n + 1, where n is the number of middle jobs. *)
move: NK => /eqP NK; rewrite -NK.
rewrite -{2}addn1 mulnDl mul1n [n* _ + _]addnC addnA addn_minl.
apply leq_add; [clear BOUNDmid | by apply BOUNDmid].
rewrite leq_min; apply/andP; split;
first by apply leq_add; apply LTserv; rewrite INboth mem_nth // SIZE.
{
rewrite subnAC subnK; last first.
{
assert (TMP: delta + R_tsk = task_cost tsk + (delta + R_tsk - task_cost tsk));
first by rewrite subnKC; [by ins | by rewrite -[task_cost _]add0n; apply leq_add].
rewrite TMP; clear TMP.
rewrite -{1}[task_cost _]addn0 -addnBA NK; [by apply leq_add | by apply leq_trunc_div].
}
apply leq_trans with (delta + R_tsk - (job_arrival j_lst - job_arrival j_fst));
first by rewrite addnC; apply BOUNDend.
by apply leq_sub2l, DIST.
}
}
{
(* Case 2: n_k = n, where n is the number of middle jobs. *)
move: NK => /eqP NK; rewrite -NK.
apply leq_add; [clear BOUNDmid | by apply BOUNDmid].
apply leq_trans with (delta + R_tsk - (job_arrival j_lst - job_arrival j_fst));
first by rewrite addnC; apply BOUNDend.
rewrite leq_min; apply/andP; split.
{
rewrite leq_subLR [_ + task_cost _]addnC -leq_subLR.
apply leq_trans with (n.+1 * task_period tsk); last by apply DIST.
rewrite NK ltnW // -ltn_divLR; last by apply task_properties0.
by unfold n_k, max_jobs, div_floor.
}
{
rewrite -subnDA; apply leq_sub2l.
apply leq_trans with (n := n.+1 * task_period tsk); last by apply DIST.
rewrite -addn1 addnC mulnDl mul1n.
rewrite leq_add2l; last by apply task_properties3.
}
}
Qed.
End BertognaCirinei.
End ProofWorkloadBound.
End WorkloadBoundFP.