Newer
Older
Require Import prosa.classic.util.all.
Require Import prosa.classic.model.arrival.basic.task prosa.classic.model.arrival.basic.job prosa.classic.model.arrival.basic.task_arrival prosa.classic.model.priority.
Require Import prosa.classic.model.schedule.global.response_time prosa.classic.model.schedule.global.workload
prosa.classic.model.schedule.global.schedulability.
Require Import prosa.classic.model.schedule.global.basic.schedule prosa.classic.model.schedule.global.basic.platform
prosa.classic.model.schedule.global.basic.interference prosa.classic.model.schedule.global.basic.interference_edf.
Require Import prosa.classic.analysis.global.basic.workload_bound
prosa.classic.analysis.global.basic.interference_bound.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop div path.
Module InterferenceBoundEDF.
Import Job SporadicTaskset Schedule ScheduleOfSporadicTask Schedulability
WorkloadBound ResponseTime Priority
TaskArrival Interference InterferenceEDF.
Export InterferenceBoundGeneric.
(* In this section, we define Bertogna and Cirinei's EDF-specific
interference bound. *)
Section SpecificBoundDef.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task -> time.
Variable task_period: sporadic_task -> time.
Variable task_deadline: sporadic_task -> time.
(* Let tsk be the task to be analyzed. *)
Variable tsk: sporadic_task.
(* Consider the interference incurred by tsk in a window of length delta... *)
Variable delta: time.
(* ... due to a different task tsk_other, with response-time bound R_other. *)
Variable tsk_other: sporadic_task.
Variable R_other: time.
(* Bertogna and Cirinei define the following bound for task interference
under EDF scheduling. *)
Definition edf_specific_interference_bound :=
let d_tsk := task_deadline tsk in
let e_other := task_cost tsk_other in
let p_other := task_period tsk_other in
let d_other := task_deadline tsk_other in
(div_floor d_tsk p_other) * e_other +
minn e_other ((d_tsk %% p_other) - (d_other - R_other)).
End SpecificBoundDef.
(* Next, we define the total interference bound for EDF, which combines the generic
and the EDF-specific bounds. *)
Section TotalInterferenceBoundEDF.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task -> time.
Variable task_period: sporadic_task -> time.
Variable task_deadline: sporadic_task -> time.
(* Let tsk be the task to be analyzed. *)
Variable tsk: sporadic_task.
Let task_with_response_time := (sporadic_task * time)%type.
(* Assume a known response-time bound for each interfering task ... *)
Variable R_prev: seq task_with_response_time.
(* ... and an interval length delta. *)
Variable delta: time.
Variable tsk_R: task_with_response_time.
Let tsk_other := fst tsk_R.
Let R_other := snd tsk_R.
(* By combining Bertogna's interference bound for a work-conserving
scheduler ... *)
Let basic_interference_bound := interference_bound_generic task_cost task_period tsk delta tsk_R.
(* ... with and EDF-specific interference bound, ... *)
Let edf_specific_bound := edf_specific_interference_bound task_cost task_period task_deadline tsk tsk_other R_other.
(* ... Bertogna and Cirinei define the following interference bound
under EDF scheduling. *)
Definition interference_bound_edf :=
minn basic_interference_bound edf_specific_bound.
(* Next we define the computation of the total interference for APA scheduling. *)
Section TotalInterference.
(* Let other_task denote tasks different from tsk. *)
Let other_task := different_task tsk.
(* The total interference incurred by tsk is bounded by the sum
of individual task interferences of the other tasks. *)
Definition total_interference_bound_edf :=
\sum_((tsk_other, R_other) <- R_prev | other_task tsk_other)
interference_bound_edf (tsk_other, R_other).
End TotalInterferenceBoundEDF.
(* In this section, we show that the EDF-specific interference bound is safe. *)
Section ProofSpecificBound.
Import Schedule Interference Platform SporadicTaskset.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task -> time.
Variable task_period: sporadic_task -> time.
Variable task_deadline: sporadic_task -> time.
Context {Job: eqType}.
Variable job_arrival: Job -> time.
Variable job_cost: Job -> time.
Variable job_deadline: Job -> time.
Variable job_task: Job -> sporadic_task.
(* Assume any job arrival sequence... *)
Variable arr_seq: arrival_sequence Job.
(* ... in which jobs arrive sporadically and have valid parameters. *)
Hypothesis H_sporadic_tasks:
sporadic_task_model task_period job_arrival job_task arr_seq.
Hypothesis H_valid_job_parameters:
forall j,
arrives_in arr_seq j ->
valid_sporadic_job task_cost task_deadline job_cost job_deadline job_task j.
(* Consider any schedule such that...*)
Variable num_cpus: nat.
Variable sched: schedule Job num_cpus.
Hypothesis H_jobs_come_from_arrival_sequence:
jobs_come_from_arrival_sequence sched arr_seq.
(* ...jobs do not execute before their arrival times nor longer
than their execution costs. *)
Hypothesis H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute job_arrival sched.
Hypothesis H_completed_jobs_dont_execute: completed_jobs_dont_execute job_cost sched.
(* Also assume that jobs are sequential and that there exists at
least one processor. *)
Hypothesis H_sequential_jobs: sequential_jobs sched.
Hypothesis H_at_least_one_cpu: num_cpus > 0.
(* Consider a task set ts where all jobs come from the task set
and tasks have valid parameters and constrained deadlines. *)
Variable ts: taskset_of sporadic_task.
Hypothesis all_jobs_from_taskset:
forall j, arrives_in arr_seq j -> job_task j \in ts.
Hypothesis H_valid_task_parameters:
valid_sporadic_taskset task_cost task_period task_deadline ts.
Hypothesis H_constrained_deadlines:
forall tsk, tsk \in ts -> task_deadline tsk <= task_period tsk.
Let no_deadline_is_missed_by_tsk (tsk: sporadic_task) :=
task_misses_no_deadline job_arrival job_cost job_deadline job_task arr_seq sched tsk.
Let response_time_bounded_by (tsk: sporadic_task) :=
is_response_time_bound_of_task job_arrival job_cost job_task arr_seq sched tsk.
(* Assume that the scheduler is a work-conserving EDF scheduler. *)
Hypothesis H_work_conserving: work_conserving job_arrival job_cost arr_seq sched.
Hypothesis H_edf_scheduler:
respects_JLFP_policy job_arrival job_cost arr_seq sched (EDF job_arrival job_deadline).
(* Let tsk_i be the task to be analyzed, ...*)
Variable tsk_i: sporadic_task.
Hypothesis H_tsk_i_in_task_set: tsk_i \in ts.
(* ... and j_i one of its jobs. *)
Variable j_i: Job.
Hypothesis H_j_i_arrives: arrives_in arr_seq j_i.
Hypothesis H_job_of_tsk_i: job_task j_i = tsk_i.
(* Let tsk_k denote any interfering task, ... *)
Variable tsk_k: sporadic_task.
Hypothesis H_tsk_k_in_task_set: tsk_k \in ts.
(* ...and R_k its response-time bound. *)
Variable R_k: time.
Hypothesis H_R_k_le_deadline: R_k <= task_deadline tsk_k.
(* Consider a time window of length delta <= D_i, starting with j_i's arrival time. *)
Variable delta: time.
Hypothesis H_delta_le_deadline: delta <= task_deadline tsk_i.
(* Assume that the jobs of tsk_k satisfy the response-time bound before the end of the interval *)
Hypothesis H_all_previous_jobs_completed_on_time :
forall j_k,
arrives_in arr_seq j_k ->
job_task j_k = tsk_k ->
job_arrival j_k + R_k < job_arrival j_i + delta ->
completed job_cost sched j_k (job_arrival j_k + R_k).
(* In this section, we prove that Bertogna and Cirinei's EDF interference bound
indeed bounds the interference caused by task tsk_k in the interval [t1, t1 + delta). *)
Section MainProof.
(* Let's call x the task interference incurred by job j due to tsk_k. *)
Let x :=
task_interference job_arrival job_cost job_task sched j_i tsk_k
(job_arrival j_i) (job_arrival j_i + delta).
(* Also, recall the EDF-specific interference bound for EDF. *)
Let interference_bound :=
edf_specific_interference_bound task_cost task_period task_deadline tsk_i tsk_k R_k.
(* Let's simplify the names a bit. *)
Let t1 := job_arrival j_i.
Let t2 := job_arrival j_i + delta.
Let D_i := task_deadline tsk_i.
Let D_k := task_deadline tsk_k.
Let p_k := task_period tsk_k.
Let n_k := div_floor D_i p_k.
(* Let's give a simpler name to job interference. *)
Let interference_caused_by := job_interference job_arrival job_cost sched j_i.
(* Identify the subset of jobs that actually cause interference *)
Let interfering_jobs :=
filter (fun j' =>
(job_task j' == tsk_k) && (interference_caused_by j' t1 t2 != 0))
(jobs_scheduled_between sched t1 t2).
(* Now, consider the list of interfering jobs sorted by arrival time. *)
Let earlier_arrival := fun x y => job_arrival x <= job_arrival y.
Let sorted_jobs := sort earlier_arrival interfering_jobs.
(* Now we proceed with the proof. The first step consists in simplifying the sum corresponding to the workload. *)
Section SimplifyJobSequence.
(* Use the alternative definition of task interference, based on
individual job interference. *)
Lemma interference_bound_edf_use_another_definition :
x <= \sum_(j <- jobs_scheduled_between sched t1 t2 | job_task j == tsk_k)
interference_caused_by j t1 t2.
Proof.
apply interference_le_interference_joblist.
(* Remove the elements that we don't care about from the sum *)
Lemma interference_bound_edf_simpl_by_filtering_interfering_jobs :
\sum_(j <- jobs_scheduled_between sched t1 t2 | job_task j == tsk_k)
interference_caused_by j t1 t2 =
\sum_(j <- interfering_jobs) interference_caused_by j t1 t2.
Proof.
unfold interfering_jobs; rewrite big_filter.
rewrite big_mkcond; rewrite [\sum_(_ <- _ | _) _]big_mkcond /=.
apply eq_bigr; intros i _; clear -i.
destruct (job_task i == tsk_k); rewrite ?andTb ?andFb; last by done.
destruct (interference_caused_by i t1 t2 != 0) eqn:DIFF; first by done.
by apply negbT in DIFF; rewrite negbK in DIFF; apply/eqP.
Qed.
(* Then, we consider the sum over the sorted sequence of jobs. *)
Lemma interference_bound_edf_simpl_by_sorting_interfering_jobs :
\sum_(j <- interfering_jobs) interference_caused_by j t1 t2 =
\sum_(j <- sorted_jobs) interference_caused_by j t1 t2.
Proof.
by rewrite (perm_big sorted_jobs) /=; last by rewrite -(perm_sort earlier_arrival).
(* Note that both sequences have the same set of elements. *)
Lemma interference_bound_edf_job_in_same_sequence :
forall j,
(j \in interfering_jobs) = (j \in sorted_jobs).
Proof.
by apply perm_mem; rewrite -(perm_sort earlier_arrival).
(* Also recall that all jobs in the sorted sequence is an interfering job of tsk_k, ... *)
Lemma interference_bound_edf_all_jobs_from_tsk_k :
forall j,
j \in sorted_jobs ->
job_task j = tsk_k /\
interference_caused_by j t1 t2 != 0 /\
j \in jobs_scheduled_between sched t1 t2.
Proof.
rename H_jobs_come_from_arrival_sequence into FROMarr.
intros j LTi.
rewrite -interference_bound_edf_job_in_same_sequence mem_filter in LTi; des.
have IN := LTi0.
unfold jobs_scheduled_between in *; rewrite mem_undup in IN.
apply mem_bigcat_nat_exists in IN; des.
rewrite mem_scheduled_jobs_eq_scheduled in IN.
repeat split; try (by done).
by apply (FROMarr j i).
(* ...and consecutive jobs are ordered by arrival. *)
Lemma interference_bound_edf_jobs_ordered_by_arrival :
forall i elem,
i < (size sorted_jobs).-1 ->
earlier_arrival (nth elem sorted_jobs i) (nth elem sorted_jobs i.+1).
Proof.
intros i elem LT.
assert (SORT: sorted earlier_arrival sorted_jobs).
by apply sort_sorted; unfold total, earlier_arrival; ins; apply leq_total.
by destruct sorted_jobs; simpl in *; [by rewrite ltn0 in LT | by apply/pathP].
Qed.
(* Finally, for any job of task tsk_k, the interference is bounded by the task cost. *)
Lemma interference_bound_edf_interference_le_task_cost :
interference_caused_by j t1 t2 <= task_cost tsk_k.
Proof.
rename H_valid_job_parameters into PARAMS.
intros j IN.
feed (interference_bound_edf_all_jobs_from_tsk_k j);
first by rewrite -interference_bound_edf_job_in_same_sequence.
move => [ARRj [TSKj _]].
apply leq_trans with (n := service_during sched j t1 t2);
first by apply job_interference_le_service.
( try ( apply cumulative_service_le_task_cost with (job_task0 := job_task)
(task_deadline0 := task_deadline) (job_cost0 := job_cost) (job_deadline0 := job_deadline) ) ||
apply cumulative_service_le_task_cost with (job_task := job_task)
(task_deadline := task_deadline) (job_cost := job_cost) (job_deadline := job_deadline));
try (by done).
by apply PARAMS.
End SimplifyJobSequence.
(* Next, we show that if the number of jobs is no larger than n_k,
the workload bound trivially holds. *)
Section InterferenceFewJobs.
Hypothesis H_few_jobs: size sorted_jobs <= n_k.
Lemma interference_bound_edf_holds_for_at_most_n_k_jobs :
\sum_(j <- sorted_jobs) interference_caused_by j t1 t2 <=
interference_bound.
Proof.
rewrite -[\sum_(_ <- _ | _) _]addn0 leq_add //.
apply leq_trans with (n := \sum_(x <- sorted_jobs) task_cost tsk_k);
last by rewrite big_const_seq iter_addn addn0 mulnC leq_mul2r; apply/orP; right.
{
rewrite [\sum_(_ <- _) interference_caused_by _ _ _]big_seq_cond.
rewrite [\sum_(_ <- _) task_cost _]big_seq_cond.
apply leq_sum; intros i; move/andP => [INi _].
rewrite -interference_bound_edf_job_in_same_sequence in INi.
by apply interference_bound_edf_interference_le_task_cost.
End InterferenceFewJobs.
(* Otherwise, assume that the number of jobs is larger than n_k >= 0. *)
Section InterferenceManyJobs.
Hypothesis H_many_jobs: n_k < size sorted_jobs.
(* This trivially implies that there's at least one job. *)
Lemma interference_bound_edf_at_least_one_job: size sorted_jobs > 0.
Proof.
by apply leq_ltn_trans with (n := n_k).
Qed.
(* Let j_fst be the first job, and a_fst its arrival time. *)
Let j_fst := nth elem sorted_jobs 0.
Let a_fst := job_arrival j_fst.
(* In this section, we prove some basic lemmas about j_fst. *)
Section FactsAboutFirstJob.
(* The first job is an interfering job of task tsk_k. *)
Lemma interference_bound_edf_j_fst_is_job_of_tsk_k :
job_task j_fst = tsk_k /\
interference_caused_by j_fst t1 t2 != 0 /\
j_fst \in jobs_scheduled_between sched t1 t2.
Proof.
by apply interference_bound_edf_all_jobs_from_tsk_k, mem_nth,
interference_bound_edf_at_least_one_job.
Qed.
(* The deadline of j_fst is the deadline of tsk_k. *)
Lemma interference_bound_edf_j_fst_deadline :
job_deadline j_fst = task_deadline tsk_k.
Proof.
unfold valid_sporadic_job in *.
rename H_valid_job_parameters into PARAMS.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [FSTarr [FSTtask _]].
by specialize (PARAMS j_fst FSTarr); des; rewrite PARAMS1 FSTtask.
Qed.
(* The deadline of j_i is the deadline of tsk_i. *)
Lemma interference_bound_edf_j_i_deadline :
job_deadline j_i = task_deadline tsk_i.
Proof.
unfold valid_sporadic_job in *.
rename H_valid_job_parameters into PARAMS,
H_job_of_tsk_i into JOBtsk.
by specialize (PARAMS j_i H_j_i_arrives); des; rewrite PARAMS1 JOBtsk.
Qed.
(* If j_fst completes by its response-time bound, then t1 <= a_fst + R_k,
where t1 is the beginning of the time window (arrival of j_i). *)
Lemma interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval :
completed job_cost sched j_fst (a_fst + R_k) ->
t1 <= a_fst + R_k.
Proof.
intros RBOUND.
rewrite leqNgt; apply/negP; unfold not; intro BUG.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [FSTarr [_ [ FSTserv _]]].
move: FSTserv => /negP FSTserv; apply FSTserv.
rewrite -leqn0; apply leq_trans with (n := service_during sched j_fst t1 t2);
first by apply job_interference_le_service.
try ( by apply cumulative_service_after_job_rt_zero with (job_cost0 := job_cost) (R := R_k)
(job_arrival0 := job_arrival); try (by done); apply ltnW ) ||
by apply cumulative_service_after_job_rt_zero with (job_cost := job_cost) (R := R_k)
(job_arrival := job_arrival); try (by done); apply ltnW.
(* Now, let's prove the interference bound for the particular case of a single job.
This case must be solved separately because the single job can simultaneously
be carry-in and carry-out job, so its response time is not necessarily
bounded by R_k (from the hypothesis H_all_previous_jobs_completed_on_time). *)
Section InterferenceSingleJob.
(* Assume that there's at least one job in the sorted list. *)
Hypothesis H_only_one_job: size sorted_jobs = 1.
(* Since there's only one job, we simplify the terms in the interference bound. *)
Lemma interference_bound_edf_simpl_when_there's_one_job :
D_i %% p_k - (D_k - R_k) = D_i - (D_k - R_k).
Proof.
rename H_many_jobs into NUM,
H_valid_task_parameters into TASK_PARAMS,
H_tsk_k_in_task_set into INk.
unfold valid_sporadic_taskset, is_valid_sporadic_task,
interference_bound, edf_specific_interference_bound in *.
rewrite H_only_one_job in NUM.
rewrite ltnS leqn0 in NUM; move: NUM => /eqP EQnk.
move: EQnk => /eqP EQnk; unfold n_k, div_floor in EQnk.
rewrite -leqn0 leqNgt divn_gt0 in EQnk;
last by specialize (TASK_PARAMS tsk_k INk); des.
by rewrite -ltnNge in EQnk; rewrite modn_small //.
Qed.
(* Next, we show that if j_fst completes by its response-time bound R_k,
then then interference bound holds. *)
Section ResponseTimeOfSingleJobBounded.
completed job_cost sched j_fst (a_fst + R_k).
Lemma interference_bound_edf_holds_for_single_job_that_completes_on_time :
job_interference job_arrival job_cost sched j_i j_fst t1 t2 <= D_i - (D_k - R_k).
Proof.
rename H_j_fst_completed_by_rt_bound into RBOUND.
have AFTERt1 :=
interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval RBOUND.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [FSTarr [_ [ LEdl _]]].
try ( apply interference_under_edf_implies_shorter_deadlines with
(arr_seq0 := arr_seq) (job_deadline0 := job_deadline) in LEdl; try (by done) ) ||
apply interference_under_edf_implies_shorter_deadlines with
(arr_seq := arr_seq) (job_deadline := job_deadline) in LEdl; try (by done).
destruct (D_k - R_k <= D_i) eqn:LEdk; last first.
apply negbT in LEdk; rewrite -ltnNge in LEdk.
apply leq_trans with (n := 0); last by done.
apply leq_trans with (n := job_interference job_arrival job_cost sched j_i j_fst
(a_fst + R_k) t2).
{
apply extend_sum; last by apply leqnn.
rewrite -(leq_add2r D_i).
rewrite interference_bound_edf_j_fst_deadline
interference_bound_edf_j_i_deadline in LEdl.
apply leq_trans with (n := a_fst + D_k); last by done.
rewrite -addnA leq_add2l.
by apply ltnW; rewrite -ltn_subRL.
}
apply leq_trans with (n := service_during sched j_fst (a_fst + R_k) t2);
first by apply job_interference_le_service.
unfold service_during; rewrite leqn0; apply/eqP.
try ( by apply cumulative_service_after_job_rt_zero with (job_cost0 := job_cost) (R := R_k)
(job_arrival0 := job_arrival); try (by done); apply leqnn ) ||
by apply cumulative_service_after_job_rt_zero with (job_cost := job_cost) (R := R_k)
(job_arrival := job_arrival); try (by done); apply leqnn.
rewrite -(leq_add2r (D_k - R_k)) addnBAC // -addnBA // subnn addn0.
assert (SUBST: D_k - R_k = \sum_(a_fst + R_k <= i < a_fst + D_k) 1).
{
rewrite big_const_nat iter_addn mul1n addn0.
rewrite addnC -subnBA; last by apply leq_addr.
by rewrite addnC -addnBA // subnn addn0.
}
apply leq_trans with (n := job_interference job_arrival job_cost sched j_i j_fst t1
(a_fst + D_k) + (D_k - R_k)).
{
rewrite leq_add2r.
destruct (t2 <= a_fst + R_k) eqn:LEt2.
{
apply extend_sum; first by apply leqnn.
apply leq_trans with (n := a_fst + R_k); first by done.
by rewrite leq_add2l; apply H_R_k_le_deadline.
}
{
unfold job_interference.
apply negbT in LEt2; rewrite -ltnNge in LEt2.
rewrite -> big_cat_nat with (n := a_fst + R_k);
[simpl | by apply AFTERt1 | by apply ltnW].
apply leq_trans with (n := job_interference job_arrival job_cost sched j_i j_fst t1
(a_fst + R_k) + service_during sched j_fst (a_fst + R_k) t2).
by apply job_interference_le_service.
try ( rewrite -> cumulative_service_after_job_rt_zero with
(job_arrival0 := job_arrival) (job_cost0 := job_cost) (R := R_k); try (by done) ) ||
rewrite -> cumulative_service_after_job_rt_zero with
(job_arrival := job_arrival) (job_cost := job_cost) (R := R_k); try (by done).
rewrite addn0; apply extend_sum; first by apply leqnn.
by rewrite leq_add2l; apply H_R_k_le_deadline.
}
}
unfold job_interference.
rewrite -> big_cat_nat with (n := a_fst + R_k);
[simpl| by apply AFTERt1 | by rewrite leq_add2l; apply H_R_k_le_deadline].
apply leq_trans with (n := job_interference job_arrival job_cost sched j_i j_fst t1
(a_fst+R_k) + service_during sched j_fst (a_fst+R_k) (a_fst+D_k) + (D_k-R_k)).
by apply job_interference_le_service.
}
unfold service_during.
try ( rewrite -> cumulative_service_after_job_rt_zero with
(job_arrival0 := job_arrival) (job_cost0 := job_cost) (R:=R_k); try (by done) ) ||
rewrite -> cumulative_service_after_job_rt_zero with
(job_arrival := job_arrival) (job_cost := job_cost) (R:=R_k); try (by done).
rewrite addn0.
apply leq_trans with (n := (\sum_(t1 <= t < a_fst + R_k) 1) +
\sum_(a_fst + R_k <= t < a_fst + D_k) 1).
{
apply leq_add; last by rewrite SUBST.
rewrite big_const_nat iter_addn mul1n addn0.
rewrite -{1}[a_fst + R_k](addKn t1) -addnBA //.
by apply job_interference_le_delta.
}
rewrite -big_cat_nat;
[simpl | by apply AFTERt1 | by rewrite leq_add2l; apply H_R_k_le_deadline ].
rewrite big_const_nat iter_addn mul1n addn0 leq_subLR.
by unfold D_i, D_k, t1, a_fst; rewrite -interference_bound_edf_j_fst_deadline
-interference_bound_edf_j_i_deadline.
}
Qed.
End ResponseTimeOfSingleJobBounded.
(* Else, if j_fst did not complete by its response-time bound, then
we need a separate proof. *)
Section ResponseTimeOfSingleJobNotBounded.
Hypothesis H_j_fst_not_complete_by_rt_bound :
~~ completed job_cost sched j_fst (a_fst + R_k).
(* This trivially implies that a_fst + R_k lies after the end of the interval,
otherwise j_fst would have completed by its response-time bound. *)
Lemma interference_bound_edf_response_time_bound_of_j_fst_after_interval :
job_arrival j_fst + R_k >= job_arrival j_i + delta.
Proof.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [FSTarr [FSTtask _]].
rewrite leqNgt; apply/negP; intro LT.
move: H_j_fst_not_complete_by_rt_bound => /negP BUG; apply BUG.
by apply H_all_previous_jobs_completed_on_time.
Qed.
(* If the slack is too big (D_i < D_k - R_k), j_fst causes no interference. *)
Lemma interference_bound_edf_holds_for_single_job_with_big_slack :
D_i < D_k - R_k ->
interference_caused_by j_fst t1 t2 = 0.
Proof.
intro LTdk.
rewrite ltn_subRL in LTdk.
rewrite -(ltn_add2l a_fst) addnA in LTdk.
apply leq_ltn_trans with (m := t1 + D_i) in LTdk; last first.
{
rewrite leq_add2r.
apply leq_trans with (n := t1 + delta); first by apply leq_addr.
by apply interference_bound_edf_response_time_bound_of_j_fst_after_interval.
apply/eqP; rewrite -[_ _ _ _ == 0]negbK; apply/negP; red; intro BUG.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [FSTarr [_ [LEdl _]]].
try ( apply interference_under_edf_implies_shorter_deadlines with
(arr_seq0 := arr_seq) (job_deadline0 := job_deadline) in BUG; try (by done) ) ||
apply interference_under_edf_implies_shorter_deadlines with
(arr_seq := arr_seq) (job_deadline := job_deadline) in BUG; try (by done).
rewrite interference_bound_edf_j_fst_deadline
interference_bound_edf_j_i_deadline in BUG.
by apply (leq_trans LTdk) in BUG; rewrite ltnn in BUG.
Qed.
(* Else, if the slack is small, j_fst causes interference for no longer than
D_i - (D_k - R_k). *)
Lemma interference_bound_edf_holds_for_single_job_with_small_slack :
D_i >= D_k - R_k ->
interference_caused_by j_fst t1 t2 <= D_i - (D_k - R_k).
Proof.
intro LEdk.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [FSTarr [FSTtask [LEdl _]]].
have LTr := interference_bound_edf_response_time_bound_of_j_fst_after_interval.
apply leq_subRL_impl; rewrite addnC.
apply leq_trans with (n := job_interference job_arrival job_cost sched j_i j_fst t1
(job_arrival j_fst + R_k) + (D_k - R_k));
first by rewrite leq_add2r; apply extend_sum; [by apply leqnn|].
apply leq_trans with (n := \sum_(t1 <= t < a_fst + R_k) 1 +
\sum_(a_fst + R_k <= t < a_fst + D_k)1).
{
apply leq_add.
{
rewrite big_const_nat iter_addn mul1n addn0.
rewrite -{1}[job_arrival j_fst + R_k](addKn t1) -addnBA;
first by apply job_interference_le_delta.
by apply leq_trans with (n := t1 + delta); first by apply leq_addr.
}
rewrite big_const_nat iter_addn mul1n addn0 addnC.
rewrite -subnBA; last by apply leq_addr.
by rewrite addnC -addnBA // subnn addn0.
}
rewrite -big_cat_nat; simpl; last 2 first.
{
apply leq_trans with (n := t1 + delta); first by apply leq_addr.
by apply interference_bound_edf_response_time_bound_of_j_fst_after_interval.
}
by rewrite leq_add2l; apply H_R_k_le_deadline.
rewrite big_const_nat iter_addn mul1n addn0 leq_subLR.
unfold D_i, D_k, t1, a_fst; rewrite -interference_bound_edf_j_fst_deadline
-interference_bound_edf_j_i_deadline.
try ( by apply interference_under_edf_implies_shorter_deadlines with
(arr_seq0 := arr_seq) (job_deadline0 := job_deadline) in LEdl ) ||
by apply interference_under_edf_implies_shorter_deadlines with
(arr_seq := arr_seq) (job_deadline := job_deadline) in LEdl.
Qed.
End ResponseTimeOfSingleJobNotBounded.
(* By combining the results above, we prove that the interference caused by the single job
is bounded by D_i - (D_k - R_k), ... *)
Lemma interference_bound_edf_interference_of_j_fst_limited_by_slack :
interference_caused_by j_fst t1 t2 <= D_i - (D_k - R_k).
Proof.
destruct (completed job_cost sched j_fst (a_fst + R_k)) eqn:COMP;
first by apply interference_bound_edf_holds_for_single_job_that_completes_on_time.
apply negbT in COMP.
destruct (ltnP D_i (D_k - R_k)) as [LEdk | LTdk].
by rewrite interference_bound_edf_holds_for_single_job_with_big_slack.
by apply interference_bound_edf_holds_for_single_job_with_small_slack.
Qed.
Lemma interference_bound_edf_holds_for_a_single_job :
interference_caused_by j_fst t1 t2 <= interference_bound.
Proof.
have ONE := interference_bound_edf_simpl_when_there's_one_job.
have SLACK := interference_bound_edf_interference_of_j_fst_limited_by_slack.
rename H_many_jobs into NUM, H_only_one_job into SIZE.
unfold interference_caused_by, interference_bound, edf_specific_interference_bound.
fold D_i D_k p_k n_k.
rewrite SIZE ltnS leqn0 in NUM; move: NUM => /eqP EQnk.
rewrite EQnk mul0n add0n.
rewrite leq_min; apply/andP; split.
apply interference_bound_edf_interference_le_task_cost.
rewrite interference_bound_edf_job_in_same_sequence.
by apply mem_nth; rewrite SIZE.
(* Next, consider the other case where there are at least two jobs:
the first job j_fst, and the last job j_lst. *)
Section InterferenceTwoOrMoreJobs.
(* Assume there are at least two jobs. *)
Variable num_mid_jobs: nat.
Hypothesis H_at_least_two_jobs : size sorted_jobs = num_mid_jobs.+2.
(* Let j_lst be the last job of the sequence and a_lst its arrival time. *)
Let j_lst := nth elem sorted_jobs num_mid_jobs.+1.
Let a_lst := job_arrival j_lst.
(* In this section, we prove some basic lemmas about the first and last jobs. *)
Section FactsAboutFirstAndLastJobs.
(* The last job is an interfering job of task tsk_k. *)
Lemma interference_bound_edf_j_lst_is_job_of_tsk_k :
job_task j_lst = tsk_k /\
interference_caused_by j_lst t1 t2 != 0 /\
j_lst \in jobs_scheduled_between sched t1 t2.
Proof.
apply interference_bound_edf_all_jobs_from_tsk_k, mem_nth.
by rewrite H_at_least_two_jobs.
Qed.
(* The deadline of j_lst is the deadline of tsk_k. *)
Lemma interference_bound_edf_j_lst_deadline :
job_deadline j_lst = task_deadline tsk_k.
Proof.
unfold valid_sporadic_job in *.
rename H_valid_job_parameters into PARAMS.
have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
destruct LST as [LSTarr [LSTtask _]].
by specialize (PARAMS j_lst LSTarr); des; rewrite PARAMS1 LSTtask.
Qed.
(* The first job arrives before the last job. *)
Lemma interference_bound_edf_j_fst_before_j_lst :
job_arrival j_fst <= job_arrival j_lst.
Proof.
rename H_at_least_two_jobs into SIZE.
unfold j_fst, j_lst; rewrite -[num_mid_jobs.+1]add0n.
apply prev_le_next; last by rewrite SIZE leqnn.
by intros i LT; apply interference_bound_edf_jobs_ordered_by_arrival.
Qed.
(* The last job arrives before the end of the interval. *)
Lemma interference_bound_edf_last_job_arrives_before_end_of_interval :
job_arrival j_lst < t2.
Proof.
rewrite leqNgt; apply/negP; unfold not; intro LT2.
exploit interference_bound_edf_all_jobs_from_tsk_k.
{
apply mem_nth; instantiate (1 := num_mid_jobs.+1).
by rewrite -(ltn_add2r 1) addn1 H_at_least_two_jobs addn1.
}
instantiate (1 := elem); move => [LSTarr [LSTtsk [/eqP LSTserv LSTin]]].
apply leq_trans with (n := service_during sched j_lst t1 t2);
first by apply job_interference_le_service.
rewrite leqn0; apply/eqP; unfold service_during.
try ( by apply cumulative_service_before_job_arrival_zero with (job_arrival0 := job_arrival) ) ||
by apply cumulative_service_before_job_arrival_zero with (job_arrival := job_arrival).
Qed.
(* Since there are multiple jobs, j_fst is far enough from the end of
(by the assumption H_all_previous_jobs_completed_on_time). *)
Lemma interference_bound_edf_j_fst_completed_on_time :
completed job_cost sched j_fst (a_fst + R_k).
Proof.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k; des.
set j_snd := nth elem sorted_jobs 1.
exploit interference_bound_edf_all_jobs_from_tsk_k.
{
by apply mem_nth; instantiate (1 := 1); rewrite H_at_least_two_jobs.
}
instantiate (1 := elem); move => [SNDarr [SNDtsk [/eqP SNDserv _]]].
apply H_all_previous_jobs_completed_on_time; try (by done).
apply leq_ltn_trans with (n := job_arrival j_snd); last first.
{
rewrite ltnNge; apply/negP; red; intro BUG; apply SNDserv.
apply/eqP; rewrite -leqn0; apply leq_trans with (n := service_during
first by apply job_interference_le_service.
try ( by apply cumulative_service_before_job_arrival_zero with (job_arrival0 := job_arrival) ) ||
by apply cumulative_service_before_job_arrival_zero with (job_arrival := job_arrival).
}
apply leq_trans with (n := a_fst + p_k).
{
by rewrite leq_add2l; apply leq_trans with (n := D_k);
[by apply H_R_k_le_deadline | by apply H_constrained_deadlines].
}
(* Since jobs are sporadic, we know that the first job arrives
at least p_k units before the second. *)
unfold p_k; rewrite -FST0.
apply H_sporadic_tasks; try (by done); [| by rewrite SNDtsk | ]; last first.
{
apply interference_bound_edf_jobs_ordered_by_arrival.
by rewrite H_at_least_two_jobs.
}
red; move => /eqP BUG.
by rewrite nth_uniq in BUG; rewrite ?SIZE //;
[ by apply interference_bound_edf_at_least_one_job
| by rewrite H_at_least_two_jobs
| by rewrite sort_uniq; apply filter_uniq, undup_uniq].
Qed.
End FactsAboutFirstAndLastJobs.
(* Next, we prove that the distance between the first and last jobs is at least
num_mid_jobs + 1 periods. *)
Lemma interference_bound_edf_many_periods_in_between :
a_lst - a_fst >= num_mid_jobs.+1 * p_k.
clear H_at_least_one_cpu H_tsk_i_in_task_set H_delta_le_deadline.
unfold a_fst, a_lst, j_fst, j_lst.
assert (EQnk: num_mid_jobs.+1=(size sorted_jobs).-1).
by rewrite H_at_least_two_jobs.
rewrite EQnk telescoping_sum;
last by ins; apply interference_bound_edf_jobs_ordered_by_arrival.
rewrite -[_ * _ tsk_k]addn0 mulnC -iter_addn -{1}[_.-1]subn0 -big_const_nat.
rewrite big_nat_cond [\sum_(0 <= i < _)(_-_)]big_nat_cond.
apply leq_sum; intros i; rewrite andbT; move => /andP LT; des.
(* To simplify, call the jobs 'cur' and 'next' *)
set cur := nth elem sorted_jobs i.
set next := nth elem sorted_jobs i.+1.
(* Show that cur arrives earlier than next *)
assert (ARRle: job_arrival cur <= job_arrival next).
by unfold cur, next; apply interference_bound_edf_jobs_ordered_by_arrival.
feed (interference_bound_edf_all_jobs_from_tsk_k cur).
by apply mem_nth, (ltn_trans LT0); destruct sorted_jobs.
intros [CURarr [CURtsk [_ CURin]]].
feed (interference_bound_edf_all_jobs_from_tsk_k next).
by apply mem_nth; destruct sorted_jobs.
intros [NEXTarr [NEXTtsk [_ NEXTin]]].
(* Use the sporadic task model to conclude that cur and next are separated
by at least (task_period tsk) units. Of course this only holds if cur != next.
Since we don't know much about the list (except that it's sorted), we must
also prove that it doesn't contain duplicates. *)
assert (CUR_LE_NEXT: job_arrival cur + task_period (job_task cur) <= job_arrival next).
apply H_sporadic_tasks; try (by done).
unfold cur, next, not; intro EQ; move: EQ => /eqP EQ.
rewrite nth_uniq in EQ; first by move: EQ => /eqP EQ; lia.
by apply ltn_trans with (n := (size sorted_jobs).-1); destruct sorted_jobs; ins.
by destruct sorted_jobs; ins.
by rewrite sort_uniq -/interfering_jobs filter_uniq // undup_uniq.
by rewrite leq_subRL_impl // /p_k -CURtsk.
(* Using the lemma above, we prove that the ratio n_k is at least the number of
middle jobs + 1, ... *)
Lemma interference_bound_edf_n_k_covers_middle_jobs_plus_one :
n_k >= num_mid_jobs.+1.
Proof.
have DIST := interference_bound_edf_many_periods_in_between.
have AFTERt1 :=
interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval
interference_bound_edf_j_fst_completed_on_time.
rename H_valid_task_parameters into TASK_PARAMS,
H_tsk_k_in_task_set into INk.
unfold valid_sporadic_taskset, is_valid_sporadic_task,
interference_bound, edf_specific_interference_bound in *.
rewrite leqNgt; apply/negP; unfold not; intro LTnk; unfold n_k in LTnk.
rewrite ltn_divLR in LTnk; last by specialize (TASK_PARAMS tsk_k INk); des.
apply (leq_trans LTnk) in DIST; rewrite ltn_subRL in DIST.
rewrite -(ltn_add2r D_k) -addnA [D_i + _]addnC addnA in DIST.
apply leq_ltn_trans with (m := job_arrival j_i + D_i) in DIST; last first.
{
rewrite leq_add2r; apply (leq_trans AFTERt1).
by rewrite leq_add2l; apply H_R_k_le_deadline.
have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
destruct LST as [LSTarr [_ [ LEdl _]]].
try ( apply interference_under_edf_implies_shorter_deadlines with
(arr_seq0 := arr_seq) (job_deadline0 := job_deadline) in LEdl; try (by done) ) ||
apply interference_under_edf_implies_shorter_deadlines with
(arr_seq := arr_seq) (job_deadline := job_deadline) in LEdl; try (by done).
unfold D_i, D_k in DIST; rewrite interference_bound_edf_j_lst_deadline
interference_bound_edf_j_i_deadline in LEdl.
by rewrite ltnNge LEdl in DIST.
(* ... which allows bounding the interference of the middle and last jobs
using n_k multiplied by the cost. *)
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
Lemma interference_bound_edf_holds_for_middle_and_last_jobs :
interference_caused_by j_lst t1 t2 +
\sum_(0 <= i < num_mid_jobs)
interference_caused_by (nth elem sorted_jobs i.+1) t1 t2
<= n_k * task_cost tsk_k.
Proof.
apply leq_trans with (n := num_mid_jobs.+1 * task_cost tsk_k); last first.
{
rewrite leq_mul2r; apply/orP; right.
by apply interference_bound_edf_n_k_covers_middle_jobs_plus_one.
}
rewrite mulSn; apply leq_add.
{
apply interference_bound_edf_interference_le_task_cost.
rewrite interference_bound_edf_job_in_same_sequence.
by apply mem_nth; rewrite H_at_least_two_jobs.
}
{
apply leq_trans with (n := \sum_(0 <= i < num_mid_jobs) task_cost tsk_k);
last by rewrite big_const_nat iter_addn addn0 mulnC subn0.
rewrite big_nat_cond [\sum_(0 <= i < num_mid_jobs) task_cost _]big_nat_cond.
apply leq_sum; intros i; rewrite andbT; move => /andP LT; des.
apply interference_bound_edf_interference_le_task_cost.
rewrite interference_bound_edf_job_in_same_sequence.
apply mem_nth; rewrite H_at_least_two_jobs.
by rewrite ltnS; apply leq_trans with (n := num_mid_jobs).
}
Qed.
(* Now, since n_k < sorted_jobs = num_mid_jobs + 2, it follows that
n_k = num_mid_jobs + 1. *)
Lemma interference_bound_edf_n_k_equals_num_mid_jobs_plus_one :
n_k = num_mid_jobs.+1.
have NK := interference_bound_edf_n_k_covers_middle_jobs_plus_one.
rename H_many_jobs into NUM, H_at_least_two_jobs into SIZE.
move: NK; rewrite leq_eqVlt orbC; move => /orP NK; des;
[by rewrite SIZE ltnS leqNgt NK in NUM | by done].
(* After proving the bounds of the middle and last jobs, we do the same for
the first job. This requires a different proof in order to exploit the slack. *)
(* As required by the next lemma, in order to move (D_i %% p_k) to the left of
the inequality (<=), we must show that it is no smaller than the slack. *)
Lemma interference_bound_edf_remainder_ge_slack :
D_k - R_k <= D_i %% p_k.
Proof.
have AFTERt1 :=
interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval
interference_bound_edf_j_fst_completed_on_time.
have NK := interference_bound_edf_n_k_equals_num_mid_jobs_plus_one.
have DIST := interference_bound_edf_many_periods_in_between.
rewrite -NK in DIST.
rewrite -subndiv_eq_mod leq_subLR.
fold (div_floor D_i p_k) n_k.
rewrite addnBA; last by apply leq_trunc_div.
apply leq_trans with (n := R_k + D_i - (a_lst - a_fst)); last by apply leq_sub2l.
rewrite subnBA; last by apply interference_bound_edf_j_fst_before_j_lst.
{
apply leq_trans with (n := t2);
[by apply ltnW, interference_bound_edf_last_job_arrives_before_end_of_interval|].
rewrite addnC addnA.
apply leq_trans with (n := t1 + D_i).
unfold t2; rewrite leq_add2l; apply H_delta_le_deadline.
by rewrite leq_add2r; apply AFTERt1.
}
rewrite -addnBA // subnn addn0 [D_k + _]addnC.
apply leq_trans with (n := t1 + D_i);
last by rewrite -addnA [D_i + _]addnC addnA leq_add2r addnC AFTERt1.
have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
destruct LST as [LSTarr [_ [ LSTserv _]]].
unfold D_i, D_k, a_lst, t1; rewrite -interference_bound_edf_j_lst_deadline
-interference_bound_edf_j_i_deadline.
try ( by apply interference_under_edf_implies_shorter_deadlines with
(arr_seq0 := arr_seq) (job_deadline0 := job_deadline) in LSTserv ) ||
by apply interference_under_edf_implies_shorter_deadlines with
(arr_seq := arr_seq) (job_deadline := job_deadline) in LSTserv.
(* To conclude that the interference bound holds, it suffices to show that
this reordered inequality holds. *)
Lemma interference_bound_edf_simpl_by_moving_to_left_side :
interference_caused_by j_fst t1 t2 + (D_k - R_k) + D_i %/ p_k * p_k <= D_i ->
interference_caused_by j_fst t1 t2 <= D_i %% p_k - (D_k - R_k).
Proof.
intro LE.
by rewrite addnC -subndiv_eq_mod; apply leq_subRL_impl; rewrite addnC.
Qed.
(* Next, we prove that interference caused by j_fst is bounded by the length
of the interval [t1, a_fst + R_k), ... *)
Lemma interference_bound_edf_interference_of_j_fst_bounded_by_response_time :
interference_caused_by j_fst t1 t2 <= \sum_(t1 <= t < a_fst + R_k) 1.
Proof.
assert (AFTERt1: t1 <= a_fst + R_k).
{
apply interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval.
by apply interference_bound_edf_j_fst_completed_on_time.
}
destruct (leqP t2 (a_fst + R_k)) as [LEt2 | GTt2].
{
apply leq_trans with (n := job_interference job_arrival job_cost sched j_i j_fst t1
(a_fst + R_k));
first by apply extend_sum; rewrite ?leqnn.
simpl_sum_const; rewrite -{1}[_ + R_k](addKn t1) -addnBA //.
by apply job_interference_le_delta.
unfold interference_caused_by, job_interference.
rewrite -> big_cat_nat with (n := a_fst + R_k);
[simpl | by apply AFTERt1 | by apply ltnW].
rewrite -[\sum_(_ <= _ < _) 1]addn0; apply leq_add.
{
simpl_sum_const; rewrite -{1}[_ + R_k](addKn t1) -addnBA //.
by apply job_interference_le_delta.
}
apply leq_trans with (n := service_during sched j_fst (a_fst + R_k) t2);
first by apply job_interference_le_service.
(try ( apply cumulative_service_after_job_rt_zero with (job_cost0 := job_cost) (R := R_k)
(job_arrival0 := job_arrival) ) ||
apply cumulative_service_after_job_rt_zero with (job_cost := job_cost) (R := R_k)
(job_arrival := job_arrival)); [ by done | | by apply leqnn].
by apply interference_bound_edf_j_fst_completed_on_time.
}
Qed.
(* ..., which leads to the following bounds based on interval lengths. *)
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
Lemma interference_bound_edf_bounding_interference_with_interval_lengths :
interference_caused_by j_fst t1 t2 + (D_k - R_k) + D_i %/ p_k * p_k <=
\sum_(t1 <= t < a_fst + R_k) 1
+ \sum_(a_fst + R_k <= t < a_fst + D_k) 1
+ \sum_(a_fst + D_k <= t < a_lst + D_k) 1.
Proof.
apply leq_trans with (n := \sum_(t1 <= t < a_fst + R_k) 1 + (D_k - R_k) +
D_i %/ p_k * p_k).
{
rewrite 2!leq_add2r.
apply interference_bound_edf_interference_of_j_fst_bounded_by_response_time.
}
apply leq_trans with (n := \sum_(t1 <= t < a_fst + R_k) 1 + (D_k - R_k) +
(a_lst - a_fst)).
{
rewrite leq_add2l; fold (div_floor D_i p_k) n_k.
rewrite interference_bound_edf_n_k_equals_num_mid_jobs_plus_one.
by apply interference_bound_edf_many_periods_in_between.
}
apply leq_trans with (n := \sum_(t1 <= t < a_fst + R_k) 1 +
\sum_(a_fst + R_k <= t < a_fst + D_k) 1 + \sum_(a_fst + D_k <= t < a_lst + D_k) 1).
{
by rewrite -2!addnA leq_add2l; apply leq_add;
rewrite big_const_nat iter_addn mul1n addn0;
rewrite ?subnDl ?subnDr leqnn.
}
by apply leqnn.
Qed.
(* To conclude, we show that the concatenation of these interval lengths equals
(a_lst + D_k) - 1, ... *)
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
Lemma interference_bound_edf_simpl_by_concatenation_of_intervals :
\sum_(t1 <= t < a_fst + R_k) 1
+ \sum_(a_fst + R_k <= t < a_fst + D_k) 1
+ \sum_(a_fst + D_k <= t < a_lst + D_k) 1 = (a_lst + D_k) - t1.
Proof.
assert (AFTERt1: t1 <= a_fst + R_k).
{
apply interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval.
by apply interference_bound_edf_j_fst_completed_on_time.
}
rewrite -big_cat_nat;
[simpl | by apply AFTERt1 | by rewrite leq_add2l; apply H_R_k_le_deadline].
rewrite -big_cat_nat; simpl; last 2 first.
{
apply leq_trans with (n := a_fst + R_k); first by apply AFTERt1.
by rewrite leq_add2l; apply H_R_k_le_deadline.
}
{
rewrite leq_add2r; unfold a_fst, a_lst, j_fst, j_lst.
rewrite -[num_mid_jobs.+1]add0n; apply prev_le_next;
last by rewrite add0n H_at_least_two_jobs ltnSn.
by ins; apply interference_bound_edf_jobs_ordered_by_arrival.
}
by rewrite big_const_nat iter_addn mul1n addn0.
Qed.
(* ... which results in proving that (a_lst + D_k) - t1 <= D_i.
This holds because high-priority jobs have earlier deadlines. Therefore,
the interference caused by the first job is bounded by D_i %% p_k - (D_k - R_k). *)
Lemma interference_bound_edf_interference_of_j_fst_limited_by_remainder_and_slack :
interference_caused_by j_fst t1 t2 <= D_i %% p_k - (D_k - R_k).
Proof.
apply interference_bound_edf_simpl_by_moving_to_left_side.
apply (leq_trans interference_bound_edf_bounding_interference_with_interval_lengths).
rewrite interference_bound_edf_simpl_by_concatenation_of_intervals leq_subLR.
have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
destruct LST as [LSTarr [_ [ LSTserv _]]].
unfold D_i, D_k, a_lst, t1; rewrite -interference_bound_edf_j_lst_deadline
-interference_bound_edf_j_i_deadline.
try ( by apply interference_under_edf_implies_shorter_deadlines
with (arr_seq0 := arr_seq) (job_deadline0 := job_deadline) in LSTserv ) ||
by apply interference_under_edf_implies_shorter_deadlines
with (arr_seq := arr_seq) (job_deadline := job_deadline) in LSTserv.
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
(* Using the lemmas above we show that the interference bound works in the
case of two or more jobs. *)
Lemma interference_bound_edf_holds_for_multiple_jobs :
\sum_(0 <= i < num_mid_jobs.+2)
interference_caused_by (nth elem sorted_jobs i) t1 t2 <= interference_bound.
Proof.
(* Knowing that we have at least two elements, we take first and last out of the sum *)
rewrite [nth]lock big_nat_recl // big_nat_recr // /= -lock.
rewrite addnA addnC addnA.
have NK := interference_bound_edf_n_k_equals_num_mid_jobs_plus_one.
(* We use the lemmas we proved to show that the interference bound holds. *)
unfold interference_bound, edf_specific_interference_bound.
fold D_i D_k p_k n_k.
rewrite addnC addnA; apply leq_add;
first by rewrite addnC interference_bound_edf_holds_for_middle_and_last_jobs.
rewrite leq_min; apply/andP; split.
{
apply interference_bound_edf_interference_le_task_cost.
rewrite interference_bound_edf_job_in_same_sequence.
by apply mem_nth; rewrite H_at_least_two_jobs.
}
by apply interference_bound_edf_interference_of_j_fst_limited_by_remainder_and_slack.
Qed.
End InterferenceTwoOrMoreJobs.
End InterferenceManyJobs.
Theorem interference_bound_edf_bounds_interference :
x <= interference_bound.
Proof.
(* Use the definition of workload based on list of jobs. *)
apply (leq_trans interference_bound_edf_use_another_definition).
(* We only care about the jobs that cause interference. *)
rewrite interference_bound_edf_simpl_by_filtering_interfering_jobs.
(* Now we order the list by job arrival time. *)
rewrite interference_bound_edf_simpl_by_sorting_interfering_jobs.
(* Next, we show that the workload bound holds if n_k
is no larger than the number of interferings jobs. *)
destruct (size sorted_jobs <= n_k) eqn:NUM;
first by apply interference_bound_edf_holds_for_at_most_n_k_jobs.
apply negbT in NUM; rewrite -ltnNge in NUM.
(* Find some dummy element to use in the nth function *)
assert (EX: exists elem: Job, True).
destruct sorted_jobs as [| j]; [by rewrite ltn0 in NUM | by exists j].
destruct EX as [elem _].
(* Now we index the sum to access the first and last elements. *)
rewrite (big_nth elem).
(* First, we show that the bound holds for an empty list of jobs. *)
destruct (size sorted_jobs) as [| n] eqn:SIZE;
first by rewrite big_geq.
(* Then, we show the same for a single job, or for multiple jobs. *)
destruct n as [| num_mid_jobs].
rewrite big_nat_recr // big_geq //.
rewrite [nth]lock /= -lock add0n.
by apply interference_bound_edf_holds_for_a_single_job; rewrite SIZE.
by apply interference_bound_edf_holds_for_multiple_jobs; first by rewrite SIZE.
End ProofSpecificBound.
(* As required by the proof of convergence of EDF RTA, we show that the
EDF-specific bound is monotonically increasing with both the size
of the interval and the value of the previous response-time bounds. *)
Section MonotonicitySpecificBound.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task -> time.
Variable task_period: sporadic_task -> time.
Variable task_deadline: sporadic_task -> time.
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
Variable tsk tsk_other: sporadic_task.
Hypothesis H_period_positive: task_period tsk_other > 0.
Variable delta delta' R R': time.
Hypothesis H_delta_monotonic: delta <= delta'.
Hypothesis H_response_time_monotonic: R <= R'.
Hypothesis H_cost_le_rt_bound: task_cost tsk_other <= R.
Lemma interference_bound_edf_monotonic :
interference_bound_edf task_cost task_period task_deadline tsk delta (tsk_other, R) <=
interference_bound_edf task_cost task_period task_deadline tsk delta' (tsk_other, R').
Proof.
rename H_response_time_monotonic into LEr, H_delta_monotonic into LEx,
H_cost_le_rt_bound into LEcost, H_period_positive into GEperiod.
unfold interference_bound_edf, interference_bound_generic.
rewrite leq_min; apply/andP; split.
{
rewrite leq_min; apply/andP; split.
apply leq_trans with (n := (minn (W task_cost task_period (fst (tsk_other, R))
(snd (tsk_other, R)) delta) (delta - task_cost tsk + 1)));
first by apply geq_minl.
apply leq_trans with (n := W task_cost task_period (fst (tsk_other, R))
(snd (tsk_other, R)) delta);
[by apply geq_minl | by apply W_monotonic].
apply leq_trans with (n := minn (W task_cost task_period (fst (tsk_other, R)) (snd (tsk_other, R)) delta) (delta - task_cost tsk + 1));
first by apply geq_minl.
apply leq_trans with (n := delta - task_cost tsk + 1);
first by apply geq_minr.
by rewrite leq_add2r leq_sub2r.
}
{
apply leq_trans with (n := edf_specific_interference_bound task_cost task_period
task_deadline tsk tsk_other R);
first by apply geq_minr.
unfold edf_specific_interference_bound; simpl.
rewrite leq_add2l leq_min; apply/andP; split; first by apply geq_minl.
apply leq_trans with (n := task_deadline tsk %% task_period tsk_other -
(task_deadline tsk_other - R));
[by apply geq_minr | by rewrite 2?leq_sub2l 2?leq_sub2r // leq_sub2l].
}
Qed.
End MonotonicitySpecificBound.