Skip to content
Snippets Groups Projects
Commit 76d20666 authored by Felipe Cerqueira's avatar Felipe Cerqueira
Browse files

Add comments to RTA

parent 14475cb3
No related branches found
No related tags found
No related merge requests found
...@@ -9,45 +9,59 @@ Module ResponseTimeAnalysis. ...@@ -9,45 +9,59 @@ Module ResponseTimeAnalysis.
Section Interference. Section Interference.
(* Assume any job arrival sequence...*)
Context {Job: eqType}. Context {Job: eqType}.
Variable job_cost: Job -> nat. Variable job_cost: Job -> nat.
Variable job_task: Job -> sporadic_task. Variable job_task: Job -> sporadic_task.
Context {arr_seq: arrival_sequence Job}. Context {arr_seq: arrival_sequence Job}.
(* ... and any platform. *)
Context {num_cpus: nat}. Context {num_cpus: nat}.
Variable rate: Job -> processor num_cpus -> nat. Variable rate: Job -> processor num_cpus -> nat.
Variable sched: schedule num_cpus arr_seq. Variable sched: schedule num_cpus arr_seq.
(* Consider any job j in a time interval [t1, t2), and ... *)
Variable j: JobIn arr_seq. Variable j: JobIn arr_seq.
Variable t1 t2: time. Variable t1 t2: time.
(* recall the definition of backlogged (pending and not scheduled). *)
Let job_is_backlogged (t: time) := Let job_is_backlogged (t: time) :=
backlogged job_cost rate sched j t. backlogged job_cost rate sched j t.
(* We define the total interference incurred by job j during [t1, t2)
as the cumulative time in which j is backlogged in this interval. *)
Definition total_interference := Definition total_interference :=
\sum_(t1 <= t < t2) job_is_backlogged t. \sum_(t1 <= t < t2) job_is_backlogged t.
Section TaskInterference. Section TaskInterference.
(* In order to define task interference, consider any task tsk. *)
Variable tsk: sporadic_task. Variable tsk: sporadic_task.
Definition has_job_of_tsk (cpu: processor num_cpus) (t: time) := Definition schedules_job_of_tsk (cpu: processor num_cpus) (t: time) :=
match (sched cpu t) with match (sched cpu t) with
| Some j' => job_task j' == tsk | Some j' => job_task j' == tsk
| None => false | None => false
end. end.
Definition tsk_is_scheduled (t: time) := (* We know that tsk is scheduled at time t if there exists a processor
[exists cpu in processor num_cpus, has_job_of_tsk cpu t]. scheduling a job of tsk. *)
Definition task_is_scheduled (t: time) :=
[exists cpu in processor num_cpus, schedules_job_of_tsk cpu t].
(* We define the total interference incurred by tsk during [t1, t2)
as the cumulative time in which tsk is scheduled. *)
Definition task_interference := Definition task_interference :=
\sum_(t1 <= t < t2) \sum_(t1 <= t < t2)
(job_is_backlogged t && tsk_is_scheduled t). (job_is_backlogged t && task_is_scheduled t).
(* Note that this definition assumes that no multiple jobs of
the same task execute in parallel (task precedence). *)
End TaskInterference. End TaskInterference.
Section BasicLemmas. Section BasicLemmas.
(* Interference cannot be larger than the considered time window. *)
Lemma total_interference_le_delta : total_interference <= t2 - t1. Lemma total_interference_le_delta : total_interference <= t2 - t1.
Proof. Proof.
unfold total_interference. unfold total_interference.
...@@ -60,24 +74,30 @@ Module ResponseTimeAnalysis. ...@@ -60,24 +74,30 @@ Module ResponseTimeAnalysis.
Section CorrespondenceWithService. Section CorrespondenceWithService.
(* Assume that jobs do not execute in parallel, ...*)
Hypothesis no_parallelism: Hypothesis no_parallelism:
jobs_dont_execute_in_parallel sched. jobs_dont_execute_in_parallel sched.
(* and that processors have unit speed. *)
Hypothesis rate_equals_one : Hypothesis rate_equals_one :
forall j cpu, rate j cpu = 1. forall j cpu, rate j cpu = 1.
(* Also assume that jobs only execute after they arrived
and no longer than their execution costs. *)
Hypothesis jobs_must_arrive_to_execute: Hypothesis jobs_must_arrive_to_execute:
jobs_must_arrive_to_execute sched. jobs_must_arrive_to_execute sched.
Hypothesis completed_jobs_dont_execute: Hypothesis completed_jobs_dont_execute:
completed_jobs_dont_execute job_cost rate sched. completed_jobs_dont_execute job_cost rate sched.
(* If job j had already arrived at time t1 and did not yet
complete by time t2, ...*)
Hypothesis job_has_arrived : Hypothesis job_has_arrived :
has_arrived j t1. has_arrived j t1.
Hypothesis job_is_not_complete : Hypothesis job_is_not_complete :
~~ completed job_cost rate sched j t2. ~~ completed job_cost rate sched j t2.
(* then the service received by j during [t1, t2) equals
the cumulative time in which it did not incur interference. *)
Lemma complement_of_interf_equals_service : Lemma complement_of_interf_equals_service :
\sum_(t1 <= t < t2) service_at rate sched j t = \sum_(t1 <= t < t2) service_at rate sched j t =
t2 - t1 - total_interference. t2 - t1 - total_interference.
...@@ -158,11 +178,12 @@ Module ResponseTimeAnalysis. ...@@ -158,11 +178,12 @@ Module ResponseTimeAnalysis.
(* ... and an interval length delta. *) (* ... and an interval length delta. *)
Variable delta: time. Variable delta: time.
(* Based on Bertogna and Cirinei's workload bound, ... *) (* Based on the workload bound, ... *)
Let workload_bound (tsk_other: sporadic_task) := Let workload_bound (tsk_other: sporadic_task) :=
W tsk_other (R_other tsk_other) delta. W tsk_other (R_other tsk_other) delta.
(* ... we define interference bounds for FP and JLFP scheduling. *) (* Bertogna and Cirinei define the following interference bound
for a task. *)
Definition interference_bound (tsk_other: sporadic_task) := Definition interference_bound (tsk_other: sporadic_task) :=
minn (workload_bound tsk_other) (delta - (task_cost tsk) + 1). minn (workload_bound tsk_other) (delta - (task_cost tsk) + 1).
...@@ -171,7 +192,7 @@ Module ResponseTimeAnalysis. ...@@ -171,7 +192,7 @@ Module ResponseTimeAnalysis.
(* Assume an FP policy. *) (* Assume an FP policy. *)
Variable higher_eq_priority: fp_policy. Variable higher_eq_priority: fp_policy.
(* Under FP scheduling, lower-priority tasks do not cause interference. *) (* Under FP scheduling, lower-priority tasks don't interfere. *)
Let interference_caused_by (tsk_other: sporadic_task) := Let interference_caused_by (tsk_other: sporadic_task) :=
if (higher_eq_priority tsk_other tsk) && (tsk_other != tsk) then if (higher_eq_priority tsk_other tsk) && (tsk_other != tsk) then
interference_bound tsk_other interference_bound tsk_other
...@@ -186,7 +207,7 @@ Module ResponseTimeAnalysis. ...@@ -186,7 +207,7 @@ Module ResponseTimeAnalysis.
Section InterferenceJLFP. Section InterferenceJLFP.
(* Under JLFP scheduling, all the other tasks may cause interference. *) (* Under JLFP scheduling, all other tasks may cause interference. *)
Let interference_caused_by (tsk_other: sporadic_task) := Let interference_caused_by (tsk_other: sporadic_task) :=
if tsk_other != tsk then if tsk_other != tsk then
interference_bound tsk_other interference_bound tsk_other
...@@ -202,71 +223,96 @@ Module ResponseTimeAnalysis. ...@@ -202,71 +223,96 @@ Module ResponseTimeAnalysis.
End InterferenceBound. End InterferenceBound.
Section ResponseTimeBound. Section ResponseTimeBound.
(* Assume any job arrival sequence... *)
Context {Job: eqType}. Context {Job: eqType}.
Variable job_cost: Job -> nat. Variable job_cost: Job -> nat.
Variable job_deadline: Job -> nat. Variable job_deadline: Job -> nat.
Variable job_task: Job -> sporadic_task. Variable job_task: Job -> sporadic_task.
Context {arr_seq: arrival_sequence Job}. Context {arr_seq: arrival_sequence Job}.
Hypothesis sporadic_tasks: sporadic_task_model arr_seq job_task. (* ... in which jobs arrive sporadically and have valid parameters. *)
Hypothesis H_sporadic_tasks: sporadic_task_model arr_seq job_task.
Hypothesis H_valid_job_parameters:
forall (j: JobIn arr_seq),
(valid_sporadic_task_job job_cost job_deadline job_task) j.
(* Consider any schedule such that...*)
Variable num_cpus: nat. Variable num_cpus: nat.
Variable rate: Job -> processor num_cpus -> nat. Variable rate: Job -> processor num_cpus -> nat.
Variable sched: schedule num_cpus arr_seq. Variable sched: schedule num_cpus arr_seq.
(* ...jobs do not execute before their arrival times nor longer
than their execution costs. *)
Hypothesis H_jobs_must_arrive_to_execute: Hypothesis H_jobs_must_arrive_to_execute:
jobs_must_arrive_to_execute sched. jobs_must_arrive_to_execute sched.
Hypothesis H_completed_jobs_dont_execute: Hypothesis H_completed_jobs_dont_execute:
completed_jobs_dont_execute job_cost rate sched. completed_jobs_dont_execute job_cost rate sched.
(* Also assume that jobs do not execute in parallel, processors have
unit speed, and that there exists at least one processor. *)
Hypothesis H_no_parallelism: Hypothesis H_no_parallelism:
jobs_dont_execute_in_parallel sched. jobs_dont_execute_in_parallel sched.
Hypothesis H_rate_equals_one : Hypothesis H_rate_equals_one :
forall j cpu, rate j cpu = 1. forall j cpu, rate j cpu = 1.
Hypothesis H_at_least_one_cpu : Hypothesis H_at_least_one_cpu :
num_cpus > 0. num_cpus > 0.
(* Assume that we have a task set where all tasks have valid
parameters and restricted deadlines. *)
Variable ts: sporadic_taskset. Variable ts: sporadic_taskset.
Hypothesis H_valid_task_parameters: valid_sporadic_taskset ts. Hypothesis H_valid_task_parameters: valid_sporadic_taskset ts.
Hypothesis H_valid_job_parameters:
forall (j: JobIn arr_seq),
(valid_sporadic_task_job job_cost job_deadline job_task) j.
Hypothesis H_restricted_deadlines: Hypothesis H_restricted_deadlines:
forall tsk, tsk \in ts -> task_deadline tsk <= task_period tsk. forall tsk, tsk \in ts -> task_deadline tsk <= task_period tsk.
(* Next, consider some task tsk in the task set that is
to be analyzed. *)
Variable tsk: sporadic_task. Variable tsk: sporadic_task.
Hypothesis task_in_ts: tsk \in ts. Hypothesis task_in_ts: tsk \in ts.
Definition no_deadline_is_missed_by_tsk (tsk: sporadic_task) := Definition no_deadline_is_missed_by_tsk (tsk: sporadic_task) :=
task_misses_no_deadline job_cost job_deadline job_task rate sched tsk. task_misses_no_deadline job_cost job_deadline job_task rate sched tsk.
Definition is_response_time_bound (tsk: sporadic_task) := Definition is_response_time_bound (tsk: sporadic_task) :=
is_response_time_bound_of_task job_cost job_task tsk rate sched. is_response_time_bound_of_task job_cost job_task tsk rate sched.
(* Assume that we know a response-time bound for the
tasks that interfere with tsk. *)
Variable R_other: sporadic_task -> time. Variable R_other: sporadic_task -> time.
(* We derive the response-time bounds for FP and EDF scheduling
separately. *)
Section UnderFPScheduling. Section UnderFPScheduling.
(* For FP scheduling, assume there exists a fixed task priority. *)
Variable higher_eq_priority: fp_policy. Variable higher_eq_priority: fp_policy.
(* We say that tsk can be interfered with by tsk_other if
tsk_other is a different task from the task set that has
higher or equal priority. *)
Definition is_interfering_task (tsk_other: sporadic_task) := Definition is_interfering_task (tsk_other: sporadic_task) :=
(tsk_other \in ts) && (tsk_other \in ts) &&
higher_eq_priority tsk_other tsk && higher_eq_priority tsk_other tsk &&
(tsk_other != tsk). (tsk_other != tsk).
(* Assume that for any interfering task, a response-time
bound R_other is known. *)
Hypothesis H_response_time_of_interfering_tasks_is_known: Hypothesis H_response_time_of_interfering_tasks_is_known:
forall tsk_other job_cost, forall tsk_other job_cost,
is_interfering_task tsk_other -> is_interfering_task tsk_other ->
is_response_time_bound_of_task job_cost job_task tsk_other rate sched (R_other tsk_other). is_response_time_bound_of_task job_cost job_task tsk_other
rate sched (R_other tsk_other).
(* Assume that no deadline is missed by any interfering task. *)
Hypothesis H_interfering_tasks_miss_no_deadlines: Hypothesis H_interfering_tasks_miss_no_deadlines:
forall tsk_other, forall tsk_other,
is_interfering_task tsk_other -> is_interfering_task tsk_other ->
task_misses_no_deadline job_cost job_deadline job_task rate sched tsk_other. task_misses_no_deadline job_cost job_deadline job_task rate
sched tsk_other.
(* Assume that the schedule satisfies the global scheduling
invariant, i.e., if any job of tsk is backlogged, all
the processors must be busy with jobs of equal or higher
priority. *)
Hypothesis H_global_scheduling_invariant: Hypothesis H_global_scheduling_invariant:
forall (j: JobIn arr_seq) (t: time), forall (j: JobIn arr_seq) (t: time),
job_task j = tsk -> job_task j = tsk ->
...@@ -274,28 +320,31 @@ Module ResponseTimeAnalysis. ...@@ -274,28 +320,31 @@ Module ResponseTimeAnalysis.
count count
(fun tsk_other : sporadic_task => (fun tsk_other : sporadic_task =>
is_interfering_task tsk_other && is_interfering_task tsk_other &&
tsk_is_scheduled job_task sched tsk_other t) ts = num_cpus. task_is_scheduled job_task sched tsk_other t) ts = num_cpus.
(* Bertogna and Cirinei's response-time bound recurrence *) (* Next, we define Bertogna and Cirinei's response-time bound recurrence *)
Definition response_time_recurrence_fp R :=
(* Let R be any time. *)
Variable R: time.
(* Bertogna and Cirinei's response-time analysis states that
if R is a fixed-point of the following recurrence, ... *)
Hypothesis H_response_time_recurrence_holds :
R = task_cost tsk + R = task_cost tsk +
div_floor div_floor
(total_interference_bound_fp ts tsk R_other R higher_eq_priority) (total_interference_bound_fp ts tsk R_other
R higher_eq_priority)
num_cpus. num_cpus.
Variable R: time. (*..., and R is no larger than the deadline of tsk, ...*)
Hypothesis H_response_time_recurrence_holds:
response_time_recurrence_fp R.
Hypothesis H_response_time_no_larger_than_deadline: Hypothesis H_response_time_no_larger_than_deadline:
R <= task_deadline tsk. R <= task_deadline tsk.
(* ..., then R bounds the response time of tsk in any schedule. *)
Theorem bertogna_cirinei_response_time_bound_fp : Theorem bertogna_cirinei_response_time_bound_fp :
is_response_time_bound tsk R. is_response_time_bound tsk R.
Proof. Proof.
unfold response_time_recurrence_fp, unfold is_response_time_bound, is_response_time_bound_of_task,
is_response_time_bound, is_response_time_bound_of_task,
job_has_completed_by, completed, job_has_completed_by, completed,
completed_jobs_dont_execute, completed_jobs_dont_execute,
valid_sporadic_task_job in *. valid_sporadic_task_job in *.
...@@ -350,13 +399,13 @@ Module ResponseTimeAnalysis. ...@@ -350,13 +399,13 @@ Module ResponseTimeAnalysis.
apply leq_sum; intros t _. apply leq_sum; intros t _.
rewrite -mulnb -[\sum_(_ < _) _]mul1n. rewrite -mulnb -[\sum_(_ < _) _]mul1n.
apply leq_mul; first by apply leq_b1. apply leq_mul; first by apply leq_b1.
destruct (tsk_is_scheduled job_task sched tsk_k t) eqn:SCHED; destruct (task_is_scheduled job_task sched tsk_k t) eqn:SCHED;
last by ins. last by ins.
unfold tsk_is_scheduled in SCHED. unfold task_is_scheduled in SCHED.
move: SCHED =>/exists_inP SCHED; destruct SCHED as [cpu _ HAScpu]. move: SCHED =>/exists_inP SCHED; destruct SCHED as [cpu _ HAScpu].
rewrite -> bigD1 with (j := cpu); simpl; last by ins. rewrite -> bigD1 with (j := cpu); simpl; last by ins.
apply ltn_addr. apply ltn_addr.
unfold service_of_task, has_job_of_tsk in *. unfold service_of_task, schedules_job_of_tsk in *.
by destruct (sched cpu t);[by rewrite HAScpu mul1n RATE|by ins]. by destruct (sched cpu t);[by rewrite HAScpu mul1n RATE|by ins].
} }
...@@ -415,7 +464,7 @@ Module ResponseTimeAnalysis. ...@@ -415,7 +464,7 @@ Module ResponseTimeAnalysis.
last by rewrite (eq_bigr (fun i => 0)); last by rewrite (eq_bigr (fun i => 0));
[by rewrite big_const_seq iter_addn mul0n addn0 mul0n|by ins]. [by rewrite big_const_seq iter_addn mul0n addn0 mul0n|by ins].
rewrite big_mkcond mul1n /=. rewrite big_mkcond mul1n /=.
rewrite (eq_bigr (fun i => (if is_interfering_task i && tsk_is_scheduled job_task sched i t then 1 else 0))); rewrite (eq_bigr (fun i => (if is_interfering_task i && task_is_scheduled job_task sched i t then 1 else 0)));
last by ins; destruct (is_interfering_task i); rewrite ?andTb ?andFb; ins. last by ins; destruct (is_interfering_task i); rewrite ?andTb ?andFb; ins.
by rewrite -big_mkcond sum1_count; apply (INVARIANT j). by rewrite -big_mkcond sum1_count; apply (INVARIANT j).
} }
...@@ -464,13 +513,13 @@ Module ResponseTimeAnalysis. ...@@ -464,13 +513,13 @@ Module ResponseTimeAnalysis.
{ {
set some_interference_A := fun t => set some_interference_A := fun t =>
backlogged job_cost rate sched j t && backlogged job_cost rate sched j t &&
has (fun tsk_k => (is_interfering_task tsk_k && ((x tsk_k) >= R - task_cost tsk + 1) && tsk_is_scheduled job_task sched tsk_k t)) ts. has (fun tsk_k => (is_interfering_task tsk_k && ((x tsk_k) >= R - task_cost tsk + 1) && task_is_scheduled job_task sched tsk_k t)) ts.
set total_interference_B := fun t => set total_interference_B := fun t =>
backlogged job_cost rate sched j t * backlogged job_cost rate sched j t *
count (fun tsk_k => count (fun tsk_k =>
is_interfering_task tsk_k && is_interfering_task tsk_k &&
((x tsk_k) < R - task_cost tsk + 1) && ((x tsk_k) < R - task_cost tsk + 1) &&
tsk_is_scheduled job_task sched tsk_k t) ts. task_is_scheduled job_task sched tsk_k t) ts.
apply leq_trans with ((\sum_(job_arrival j <= t < job_arrival j + R) some_interference_A t) * (num_cpus - card)). apply leq_trans with ((\sum_(job_arrival j <= t < job_arrival j + R) some_interference_A t) * (num_cpus - card)).
{ {
...@@ -482,7 +531,7 @@ Module ResponseTimeAnalysis. ...@@ -482,7 +531,7 @@ Module ResponseTimeAnalysis.
apply leq_sum; ins. apply leq_sum; ins.
destruct (backlogged job_cost rate sched j i); destruct (backlogged job_cost rate sched j i);
[rewrite 2!andTb | by ins]. [rewrite 2!andTb | by ins].
destruct (tsk_is_scheduled job_task sched tsk_a i) eqn:SCHEDa; destruct (task_is_scheduled job_task sched tsk_a i) eqn:SCHEDa;
[apply eq_leq; symmetry | by ins]. [apply eq_leq; symmetry | by ins].
apply/eqP; rewrite eqb1. apply/eqP; rewrite eqb1.
apply/hasP; exists tsk_a; first by ins. apply/hasP; exists tsk_a; first by ins.
...@@ -499,7 +548,7 @@ Module ResponseTimeAnalysis. ...@@ -499,7 +548,7 @@ Module ResponseTimeAnalysis.
destruct (has (fun tsk_k : sporadic_task => destruct (has (fun tsk_k : sporadic_task =>
is_interfering_task tsk_k && is_interfering_task tsk_k &&
(R - task_cost tsk + 1 <= x tsk_k) && (R - task_cost tsk + 1 <= x tsk_k) &&
tsk_is_scheduled job_task sched tsk_k t) ts) eqn:HAS; task_is_scheduled job_task sched tsk_k t) ts) eqn:HAS;
last by ins. last by ins.
rewrite mul1n; move: HAS => /hasP HAS. rewrite mul1n; move: HAS => /hasP HAS.
destruct HAS as [tsk_k INk H]. destruct HAS as [tsk_k INk H].
...@@ -510,12 +559,12 @@ Module ResponseTimeAnalysis. ...@@ -510,12 +559,12 @@ Module ResponseTimeAnalysis.
unfold card. unfold card.
set interfering_tasks_at_t := set interfering_tasks_at_t :=
[seq tsk_k <- ts | is_interfering_task tsk_k && tsk_is_scheduled job_task sched tsk_k t]. [seq tsk_k <- ts | is_interfering_task tsk_k && task_is_scheduled job_task sched tsk_k t].
rewrite -(count_filter (fun i => true)) in COUNT. rewrite -(count_filter (fun i => true)) in COUNT.
fold interfering_tasks_at_t in COUNT. fold interfering_tasks_at_t in COUNT.
rewrite count_predT in COUNT. rewrite count_predT in COUNT.
apply leq_trans with (n := num_cpus - count (fun i => is_interfering_task i && (x i >= R - task_cost tsk + 1) && tsk_is_scheduled job_task sched i t) ts). apply leq_trans with (n := num_cpus - count (fun i => is_interfering_task i && (x i >= R - task_cost tsk + 1) && task_is_scheduled job_task sched i t) ts).
{ {
apply leq_sub2l. apply leq_sub2l.
rewrite -2!sum1_count big_mkcond /=. rewrite -2!sum1_count big_mkcond /=.
...@@ -523,7 +572,7 @@ Module ResponseTimeAnalysis. ...@@ -523,7 +572,7 @@ Module ResponseTimeAnalysis.
apply leq_sum; intros i _. apply leq_sum; intros i _.
unfold x; destruct (is_interfering_task i); unfold x; destruct (is_interfering_task i);
[rewrite andTb | by rewrite 2!andFb]. [rewrite andTb | by rewrite 2!andFb].
destruct (tsk_is_scheduled job_task sched i t); destruct (task_is_scheduled job_task sched i t);
[by rewrite andbT | by rewrite andbF]. [by rewrite andbT | by rewrite andbF].
} }
...@@ -533,11 +582,11 @@ Module ResponseTimeAnalysis. ...@@ -533,11 +582,11 @@ Module ResponseTimeAnalysis.
count (predU (fun i : sporadic_task => count (predU (fun i : sporadic_task =>
is_interfering_task i && is_interfering_task i &&
(R - task_cost tsk + 1 <= x i) && (R - task_cost tsk + 1 <= x i) &&
tsk_is_scheduled job_task sched i t) task_is_scheduled job_task sched i t)
(fun tsk_k0 : sporadic_task => (fun tsk_k0 : sporadic_task =>
is_interfering_task tsk_k0 && is_interfering_task tsk_k0 &&
(x tsk_k0 < R - task_cost tsk + 1) && (x tsk_k0 < R - task_cost tsk + 1) &&
tsk_is_scheduled job_task sched tsk_k0 t)) task_is_scheduled job_task sched tsk_k0 t))
ts); last by apply leq_addr. ts); last by apply leq_addr.
apply leq_trans with (n := size interfering_tasks_at_t); apply leq_trans with (n := size interfering_tasks_at_t);
first by rewrite COUNT. first by rewrite COUNT.
...@@ -547,7 +596,7 @@ Module ResponseTimeAnalysis. ...@@ -547,7 +596,7 @@ Module ResponseTimeAnalysis.
apply eq_count; red; simpl. apply eq_count; red; simpl.
intros i. intros i.
destruct (is_interfering_task i), destruct (is_interfering_task i),
(tsk_is_scheduled job_task sched i t); (task_is_scheduled job_task sched i t);
rewrite 3?andTb ?andFb ?andbF ?andbT /=; try ins. rewrite 3?andTb ?andFb ?andbF ?andbT /=; try ins.
by rewrite leqNgt orNb. by rewrite leqNgt orNb.
} }
...@@ -557,7 +606,7 @@ Module ResponseTimeAnalysis. ...@@ -557,7 +606,7 @@ Module ResponseTimeAnalysis.
(fun i => \sum_(job_arrival j <= t < job_arrival j + R) (fun i => \sum_(job_arrival j <= t < job_arrival j + R)
is_interfering_task i && is_interfering_task i &&
backlogged job_cost rate sched j t && backlogged job_cost rate sched j t &&
tsk_is_scheduled job_task sched i t)); task_is_scheduled job_task sched i t));
last first. last first.
{ {
ins; destruct (is_interfering_task i); ins; destruct (is_interfering_task i);
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment