Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PROSA - Formally Proven Schedulability Analysis
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Lasse Blaauwbroek
PROSA - Formally Proven Schedulability Analysis
Commits
aac7e9a3
Commit
aac7e9a3
authored
8 years ago
by
Felipe Cerqueira
Browse files
Options
Downloads
Patches
Plain Diff
Add argmin and argmax for lists
parent
ac6f0d4e
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
Makefile
+2
-1
2 additions, 1 deletion
Makefile
util/all.v
+1
-0
1 addition, 0 deletions
util/all.v
util/minmax.v
+387
-0
387 additions, 0 deletions
util/minmax.v
util/sum.v
+0
-137
0 additions, 137 deletions
util/sum.v
with
390 additions
and
138 deletions
Makefile
+
2
−
1
View file @
aac7e9a3
...
...
@@ -14,7 +14,7 @@
#
# This Makefile was generated by the command line :
# coq_makefile -f _CoqProject ./util/ssromega.v ./util/seqset.v ./util/sorting.v ./util/powerset.v ./util/all.v ./util/ord_quantifier.v ./util/nat.v ./util/sum.v ./util/bigord.v ./util/counting.v ./util/tactics.v ./util/induction.v ./util/list.v ./util/divround.v ./util/bigcat.v ./util/fixedpoint.v ./util/notation.v ./analysis/global/jitter/bertogna_fp_comp.v ./analysis/global/jitter/interference_bound_edf.v ./analysis/global/jitter/workload_bound.v ./analysis/global/jitter/bertogna_edf_comp.v ./analysis/global/jitter/bertogna_fp_theory.v ./analysis/global/jitter/interference_bound.v ./analysis/global/jitter/interference_bound_fp.v ./analysis/global/jitter/bertogna_edf_theory.v ./analysis/global/parallel/bertogna_fp_comp.v ./analysis/global/parallel/interference_bound_edf.v ./analysis/global/parallel/workload_bound.v ./analysis/global/parallel/bertogna_edf_comp.v ./analysis/global/parallel/bertogna_fp_theory.v ./analysis/global/parallel/interference_bound.v ./analysis/global/parallel/interference_bound_fp.v ./analysis/global/parallel/bertogna_edf_theory.v ./analysis/global/basic/bertogna_fp_comp.v ./analysis/global/basic/interference_bound_edf.v ./analysis/global/basic/workload_bound.v ./analysis/global/basic/bertogna_edf_comp.v ./analysis/global/basic/bertogna_fp_theory.v ./analysis/global/basic/interference_bound.v ./analysis/global/basic/interference_bound_fp.v ./analysis/global/basic/bertogna_edf_theory.v ./analysis/apa/bertogna_fp_comp.v ./analysis/apa/interference_bound_edf.v ./analysis/apa/workload_bound.v ./analysis/apa/bertogna_edf_comp.v ./analysis/apa/bertogna_fp_theory.v ./analysis/apa/interference_bound.v ./analysis/apa/interference_bound_fp.v ./analysis/apa/bertogna_edf_theory.v ./analysis/uni/basic/workload_bound_fp.v ./analysis/uni/basic/fp_rta_comp.v ./analysis/uni/basic/fp_rta_theory.v ./model/arrival_sequence.v ./model/task.v ./model/task_arrival.v ./model/partitioned/schedulability.v ./model/partitioned/schedule.v ./model/priority.v ./model/global/workload.v ./model/global/schedulability.v ./model/global/jitter/interference_edf.v ./model/global/jitter/interference.v ./model/global/jitter/job.v ./model/global/jitter/constrained_deadlines.v ./model/global/jitter/schedule.v ./model/global/jitter/platform.v ./model/global/response_time.v ./model/global/basic/interference_edf.v ./model/global/basic/interference.v ./model/global/basic/constrained_deadlines.v ./model/global/basic/schedule.v ./model/global/basic/platform.v ./model/job.v ./model/time.v ./model/arrival_bounds.v ./model/apa/interference_edf.v ./model/apa/interference.v ./model/apa/affinity.v ./model/apa/constrained_deadlines.v ./model/apa/platform.v ./model/uni/workload.v ./model/uni/schedulability.v ./model/uni/schedule_of_task.v ./model/uni/response_time.v ./model/uni/schedule.v ./model/uni/basic/arrival_bounds.v ./model/uni/basic/busy_interval.v ./model/uni/basic/platform.v ./model/uni/service.v ./implementation/arrival_sequence.v ./implementation/task.v ./implementation/global/jitter/arrival_sequence.v ./implementation/global/jitter/task.v ./implementation/global/jitter/bertogna_edf_example.v ./implementation/global/jitter/job.v ./implementation/global/jitter/bertogna_fp_example.v ./implementation/global/jitter/schedule.v ./implementation/global/parallel/bertogna_edf_example.v ./implementation/global/parallel/bertogna_fp_example.v ./implementation/global/basic/bertogna_edf_example.v ./implementation/global/basic/bertogna_fp_example.v ./implementation/global/basic/schedule.v ./implementation/job.v ./implementation/apa/arrival_sequence.v ./implementation/apa/task.v ./implementation/apa/bertogna_edf_example.v ./implementation/apa/job.v ./implementation/apa/bertogna_fp_example.v ./implementation/apa/schedule.v ./implementation/uni/basic/fp_rta_example.v ./implementation/uni/basic/schedule.v -o Makefile
# coq_makefile -f _CoqProject ./util/ssromega.v ./util/seqset.v ./util/sorting.v
./util/minmax.v
./util/powerset.v ./util/all.v ./util/ord_quantifier.v ./util/nat.v ./util/sum.v ./util/bigord.v ./util/counting.v ./util/tactics.v ./util/induction.v ./util/list.v ./util/divround.v ./util/bigcat.v ./util/fixedpoint.v ./util/notation.v ./analysis/global/jitter/bertogna_fp_comp.v ./analysis/global/jitter/interference_bound_edf.v ./analysis/global/jitter/workload_bound.v ./analysis/global/jitter/bertogna_edf_comp.v ./analysis/global/jitter/bertogna_fp_theory.v ./analysis/global/jitter/interference_bound.v ./analysis/global/jitter/interference_bound_fp.v ./analysis/global/jitter/bertogna_edf_theory.v ./analysis/global/parallel/bertogna_fp_comp.v ./analysis/global/parallel/interference_bound_edf.v ./analysis/global/parallel/workload_bound.v ./analysis/global/parallel/bertogna_edf_comp.v ./analysis/global/parallel/bertogna_fp_theory.v ./analysis/global/parallel/interference_bound.v ./analysis/global/parallel/interference_bound_fp.v ./analysis/global/parallel/bertogna_edf_theory.v ./analysis/global/basic/bertogna_fp_comp.v ./analysis/global/basic/interference_bound_edf.v ./analysis/global/basic/workload_bound.v ./analysis/global/basic/bertogna_edf_comp.v ./analysis/global/basic/bertogna_fp_theory.v ./analysis/global/basic/interference_bound.v ./analysis/global/basic/interference_bound_fp.v ./analysis/global/basic/bertogna_edf_theory.v ./analysis/apa/bertogna_fp_comp.v ./analysis/apa/interference_bound_edf.v ./analysis/apa/workload_bound.v ./analysis/apa/bertogna_edf_comp.v ./analysis/apa/bertogna_fp_theory.v ./analysis/apa/interference_bound.v ./analysis/apa/interference_bound_fp.v ./analysis/apa/bertogna_edf_theory.v ./analysis/uni/basic/workload_bound_fp.v ./analysis/uni/basic/fp_rta_comp.v ./analysis/uni/basic/fp_rta_theory.v ./model/arrival_sequence.v ./model/task.v ./model/task_arrival.v ./model/partitioned/schedulability.v ./model/partitioned/schedule.v ./model/priority.v ./model/global/workload.v ./model/global/schedulability.v ./model/global/jitter/interference_edf.v ./model/global/jitter/interference.v ./model/global/jitter/job.v ./model/global/jitter/constrained_deadlines.v ./model/global/jitter/schedule.v ./model/global/jitter/platform.v ./model/global/response_time.v ./model/global/basic/interference_edf.v ./model/global/basic/interference.v ./model/global/basic/constrained_deadlines.v ./model/global/basic/schedule.v ./model/global/basic/platform.v ./model/job.v ./model/time.v ./model/arrival_bounds.v ./model/apa/interference_edf.v ./model/apa/interference.v ./model/apa/affinity.v ./model/apa/constrained_deadlines.v ./model/apa/platform.v ./model/uni/workload.v ./model/uni/schedulability.v ./model/uni/schedule_of_task.v ./model/uni/response_time.v ./model/uni/schedule.v ./model/uni/basic/arrival_bounds.v ./model/uni/basic/busy_interval.v ./model/uni/basic/platform.v ./model/uni/service.v ./implementation/arrival_sequence.v ./implementation/task.v ./implementation/global/jitter/arrival_sequence.v ./implementation/global/jitter/task.v ./implementation/global/jitter/bertogna_edf_example.v ./implementation/global/jitter/job.v ./implementation/global/jitter/bertogna_fp_example.v ./implementation/global/jitter/schedule.v ./implementation/global/parallel/bertogna_edf_example.v ./implementation/global/parallel/bertogna_fp_example.v ./implementation/global/basic/bertogna_edf_example.v ./implementation/global/basic/bertogna_fp_example.v ./implementation/global/basic/schedule.v ./implementation/job.v ./implementation/apa/arrival_sequence.v ./implementation/apa/task.v ./implementation/apa/bertogna_edf_example.v ./implementation/apa/job.v ./implementation/apa/bertogna_fp_example.v ./implementation/apa/schedule.v ./implementation/uni/basic/fp_rta_example.v ./implementation/uni/basic/schedule.v -o Makefile
#
.DEFAULT_GOAL
:=
all
...
...
@@ -97,6 +97,7 @@ endif
VFILES
:=
util/ssromega.v
\
util/seqset.v
\
util/sorting.v
\
util/minmax.v
\
util/powerset.v
\
util/all.v
\
util/ord_quantifier.v
\
...
...
This diff is collapsed.
Click to expand it.
util/all.v
+
1
−
0
View file @
aac7e9a3
...
...
@@ -13,4 +13,5 @@ Require Export rt.util.powerset.
Require
Export
rt
.
util
.
sorting
.
Require
Export
rt
.
util
.
ssromega
.
Require
Export
rt
.
util
.
sum
.
Require
Export
rt
.
util
.
minmax
.
Require
Export
rt
.
util
.
seqset
.
This diff is collapsed.
Click to expand it.
util/minmax.v
0 → 100644
+
387
−
0
View file @
aac7e9a3
Require
Import
rt
.
util
.
tactics
rt
.
util
.
notation
rt
.
util
.
sorting
rt
.
util
.
nat
.
From
mathcomp
Require
Import
ssreflect
ssrbool
eqtype
ssrnat
seq
fintype
bigop
.
Section
MinMaxSeq
.
Section
Arg
.
Context
{
T
:
eqType
}
.
Variable
F
:
T
->
nat
.
Fixpoint
seq_argmax
(
F
:
T
->
nat
)
(
l
:
seq
T
)
:=
if
l
is
x
::
l'
then
if
seq_argmax
F
l'
is
Some
y
then
if
F
x
>=
F
y
then
Some
x
else
Some
y
else
Some
x
else
None
.
Fixpoint
seq_argmin
(
F
:
T
->
nat
)
(
l
:
seq
T
)
:=
if
l
is
x
::
l'
then
if
seq_argmin
F
l'
is
Some
y
then
if
F
x
<=
F
y
then
Some
x
else
Some
y
else
Some
x
else
None
.
Section
Lemmas
.
Lemma
seq_max_exists
:
forall
l
x
,
x
\
in
l
->
seq_argmax
F
l
!=
None
.
Proof
.
induction
l
;
first
by
done
.
intros
x
;
rewrite
in_cons
.
move
=>
/
orP
[
/
eqP
EQ
|
IN
]
/=
;
first
by
subst
;
destruct
(
seq_argmax
F
l
);
first
by
case
:
ifP
.
by
destruct
(
seq_argmax
F
l
);
first
by
case
:
ifP
.
Qed
.
Lemma
mem_seq_max
:
forall
l
x
,
seq_argmax
F
l
=
Some
x
->
x
\
in
l
.
Proof
.
induction
l
;
simpl
;
first
by
done
.
intros
x
ARG
.
destruct
(
seq_argmax
F
l
);
last
by
case
:
ARG
=>
EQ
;
subst
;
rewrite
in_cons
eq_refl
.
destruct
(
F
s
<=
F
a
);
first
by
case
:
ARG
=>
EQ
;
subst
;
rewrite
in_cons
eq_refl
.
case
:
ARG
=>
EQ
;
subst
.
by
rewrite
in_cons
;
apply
/
orP
;
right
;
apply
IHl
.
Qed
.
Lemma
seq_max_computes_max
:
forall
l
x
y
,
seq_argmax
F
l
=
Some
x
->
y
\
in
l
->
F
x
>=
F
y
.
Proof
.
induction
l
;
first
by
done
.
intros
x
y
EQmax
IN
;
simpl
in
EQmax
.
rewrite
in_cons
in
IN
.
move
:
IN
=>
/
orP
[
/
eqP
EQ
|
IN
]
.
{
subst
.
destruct
(
seq_argmax
F
l
)
eqn
:
ARG
;
last
by
case
:
EQmax
=>
EQ
;
subst
.
destruct
(
leqP
(
F
s
)
(
F
a
))
as
[
LE
|
GT
];
first
by
case
:
EQmax
=>
EQ
;
subst
.
apply
leq_trans
with
(
n
:=
F
s
);
first
by
apply
ltnW
.
apply
IHl
;
first
by
done
.
by
apply
mem_seq_max
.
}
{
destruct
(
seq_argmax
F
l
)
eqn
:
ARG
.
{
destruct
(
leqP
(
F
s
)
(
F
a
))
as
[
LE
|
GT
];
last
by
case
:
EQmax
=>
EQ
;
subst
;
apply
IHl
.
case
:
EQmax
=>
EQ
;
subst
.
by
apply
:
(
leq_trans
_
LE
);
apply
IHl
.
}
{
case
:
EQmax
=>
EQ
;
subst
.
by
apply
seq_max_exists
in
IN
;
rewrite
ARG
in
IN
.
}
}
Qed
.
Lemma
seq_min_exists
:
forall
l
x
,
x
\
in
l
->
seq_argmin
F
l
!=
None
.
Proof
.
induction
l
;
first
by
done
.
intros
x
;
rewrite
in_cons
.
move
=>
/
orP
[
/
eqP
EQ
|
IN
]
/=
;
first
by
subst
;
destruct
(
seq_argmin
F
l
);
first
by
case
:
ifP
.
by
destruct
(
seq_argmin
F
l
);
first
by
case
:
ifP
.
Qed
.
Lemma
mem_seq_min
:
forall
l
x
,
seq_argmin
F
l
=
Some
x
->
x
\
in
l
.
Proof
.
induction
l
;
simpl
;
first
by
done
.
intros
x
ARG
.
destruct
(
seq_argmin
F
l
);
last
by
case
:
ARG
=>
EQ
;
subst
;
rewrite
in_cons
eq_refl
.
destruct
(
F
s
>=
F
a
);
first
by
case
:
ARG
=>
EQ
;
subst
;
rewrite
in_cons
eq_refl
.
case
:
ARG
=>
EQ
;
subst
.
by
rewrite
in_cons
;
apply
/
orP
;
right
;
apply
IHl
.
Qed
.
Lemma
seq_min_computes_min
:
forall
l
x
y
,
seq_argmin
F
l
=
Some
x
->
y
\
in
l
->
F
x
<=
F
y
.
Proof
.
induction
l
;
first
by
done
.
intros
x
y
EQmin
IN
;
simpl
in
EQmin
.
rewrite
in_cons
in
IN
.
move
:
IN
=>
/
orP
[
/
eqP
EQ
|
IN
]
.
{
subst
;
destruct
(
seq_argmin
F
l
)
eqn
:
ARG
;
last
by
case
:
EQmin
=>
EQ
;
subst
.
destruct
(
ltnP
(
F
s
)
(
F
a
))
as
[
LT
|
GE
];
last
by
case
:
EQmin
=>
EQ
;
subst
.
apply
leq_trans
with
(
n
:=
F
s
);
last
by
apply
ltnW
.
apply
IHl
;
first
by
done
.
by
apply
mem_seq_min
.
}
{
destruct
(
seq_argmin
F
l
)
eqn
:
ARG
.
{
destruct
(
ltnP
(
F
s
)
(
F
a
))
as
[
LT
|
GE
];
first
by
case
:
EQmin
=>
EQ
;
subst
;
apply
IHl
.
case
:
EQmin
=>
EQ
;
subst
.
by
apply
:
(
leq_trans
GE
);
apply
IHl
.
}
{
case
:
EQmin
=>
EQ
;
subst
.
by
apply
seq_min_exists
in
IN
;
rewrite
ARG
in
IN
.
}
}
Qed
.
End
Lemmas
.
End
Arg
.
Definition
seq_max
:=
seq_argmax
id
.
Definition
seq_min
:=
seq_argmin
id
.
End
MinMaxSeq
.
(* Additional lemmas about sum and max big operators. *)
Section
ExtraLemmasSumMax
.
Lemma
leq_big_max
I
r
(
P
:
pred
I
)
(
E1
E2
:
I
->
nat
)
:
(
forall
i
,
P
i
->
E1
i
<=
E2
i
)
->
\
max_
(
i
<-
r
|
P
i
)
E1
i
<=
\
max_
(
i
<-
r
|
P
i
)
E2
i
.
Proof
.
move
=>
leE12
;
elim
/
big_ind2
:
_
=>
//
m1
m2
n1
n2
.
intros
LE1
LE2
;
rewrite
leq_max
;
unfold
maxn
.
by
destruct
(
m2
<
n2
)
eqn
:
LT
;
[
by
apply
/
orP
;
right
|
by
apply
/
orP
;
left
]
.
Qed
.
Lemma
bigmax_ord_ltn_identity
n
:
n
>
0
->
\
max_
(
i
<
n
)
i
<
n
.
Proof
.
intros
LT
.
destruct
n
;
first
by
rewrite
ltn0
in
LT
.
clear
LT
.
induction
n
;
first
by
rewrite
big_ord_recr
/=
big_ord0
maxn0
.
rewrite
big_ord_recr
/=.
unfold
maxn
at
1
;
desf
.
by
apply
leq_trans
with
(
n
:=
n
.
+
1
)
.
Qed
.
Lemma
bigmax_ltn_ord
n
(
P
:
pred
nat
)
(
i0
:
'
I_n
)
:
P
i0
->
\
max_
(
i
<
n
|
P
i
)
i
<
n
.
Proof
.
intros
LT
.
destruct
n
;
first
by
destruct
i0
as
[
i0
P0
];
move
:
(
P0
)
=>
P0'
;
rewrite
ltn0
in
P0'
.
rewrite
big_mkcond
.
apply
leq_ltn_trans
with
(
n
:=
\
max_
(
i
<
n
.
+
1
)
i
)
.
{
apply
/
bigmax_leqP
;
ins
.
destruct
(
P
i
);
last
by
done
.
by
apply
leq_bigmax_cond
.
}
by
apply
bigmax_ord_ltn_identity
.
Qed
.
Lemma
bigmax_pred
n
(
P
:
pred
nat
)
(
i0
:
'
I_n
)
:
P
(
i0
)
->
P
(
\
max_
(
i
<
n
|
P
i
)
i
)
.
Proof
.
intros
PRED
.
induction
n
.
{
destruct
i0
as
[
i0
P0
]
.
by
move
:
(
P0
)
=>
P1
;
rewrite
ltn0
in
P1
.
}
rewrite
big_mkcond
big_ord_recr
/=
;
desf
.
{
destruct
n
;
first
by
rewrite
big_ord0
maxn0
.
unfold
maxn
at
1
;
desf
.
exfalso
.
apply
negbT
in
Heq0
;
move
:
Heq0
=>
/
negP
BUG
.
apply
BUG
.
apply
leq_ltn_trans
with
(
n
:=
\
max_
(
i
<
n
.
+
1
)
i
)
.
{
apply
/
bigmax_leqP
;
ins
.
destruct
(
P
i
);
last
by
done
.
by
apply
leq_bigmax_cond
.
}
by
apply
bigmax_ord_ltn_identity
.
}
{
rewrite
maxn0
.
rewrite
-
big_mkcond
/=.
have
LT
:
i0
<
n
.
{
rewrite
ltn_neqAle
;
apply
/
andP
;
split
;
last
by
rewrite
-
ltnS
;
apply
ltn_ord
.
apply
/
negP
;
move
=>
/
eqP
BUG
.
by
rewrite
-
BUG
PRED
in
Heq
.
}
by
rewrite
(
IHn
(
Ordinal
LT
))
.
}
Qed
.
Lemma
sum_nat_eq0_nat
(
T
:
eqType
)
(
F
:
T
->
nat
)
(
r
:
seq
T
)
:
all
(
fun
x
=>
F
x
==
0
)
r
=
(
\
sum_
(
i
<-
r
)
F
i
==
0
)
.
Proof
.
destruct
(
all
(
fun
x
=>
F
x
==
0
)
r
)
eqn
:
ZERO
.
{
move
:
ZERO
=>
/
allP
ZERO
;
rewrite
-
leqn0
.
rewrite
big_seq_cond
(
eq_bigr
(
fun
x
=>
0
));
first
by
rewrite
big_const_seq
iter_addn
mul0n
addn0
leqnn
.
intro
i
;
rewrite
andbT
;
intros
IN
.
specialize
(
ZERO
i
);
rewrite
IN
in
ZERO
.
by
move
:
ZERO
=>
/
implyP
ZERO
;
apply
/
eqP
;
apply
ZERO
.
}
{
apply
negbT
in
ZERO
;
rewrite
-
has_predC
in
ZERO
.
move
:
ZERO
=>
/
hasP
ZERO
;
destruct
ZERO
as
[
x
IN
NEQ
];
simpl
in
NEQ
.
rewrite
(
big_rem
x
)
/=
;
last
by
done
.
symmetry
;
apply
negbTE
;
rewrite
neq_ltn
;
apply
/
orP
;
right
.
apply
leq_trans
with
(
n
:=
F
x
);
last
by
apply
leq_addr
.
by
rewrite
lt0n
.
}
Qed
.
Lemma
extend_sum
:
forall
t1
t2
t1'
t2'
F
,
t1'
<=
t1
->
t2
<=
t2'
->
\
sum_
(
t1
<=
t
<
t2
)
F
t
<=
\
sum_
(
t1'
<=
t
<
t2'
)
F
t
.
Proof
.
intros
t1
t2
t1'
t2'
F
LE1
LE2
.
destruct
(
t1
<=
t2
)
eqn
:
LE12
;
last
by
apply
negbT
in
LE12
;
rewrite
-
ltnNge
in
LE12
;
rewrite
big_geq
//
ltnW
.
rewrite
->
big_cat_nat
with
(
m
:=
t1'
)
(
n
:=
t1
);
try
(
by
done
);
simpl
;
last
by
apply
leq_trans
with
(
n
:=
t2
)
.
rewrite
->
big_cat_nat
with
(
p
:=
t2'
)
(
n
:=
t2
);
try
(
by
done
);
simpl
.
by
rewrite
addnC
-
addnA
;
apply
leq_addr
.
Qed
.
Lemma
leq_sum_nat
m
n
(
P
:
pred
nat
)
(
E1
E2
:
nat
->
nat
)
:
(
forall
i
,
m
<=
i
<
n
->
P
i
->
E1
i
<=
E2
i
)
->
\
sum_
(
m
<=
i
<
n
|
P
i
)
E1
i
<=
\
sum_
(
m
<=
i
<
n
|
P
i
)
E2
i
.
Proof
.
intros
LE
.
rewrite
big_nat_cond
[
\
sum_
(_
<=
_
<
_|
P
_)_]
big_nat_cond
.
by
apply
leq_sum
;
move
=>
j
/
andP
[
IN
H
];
apply
LE
.
Qed
.
Lemma
leq_sum_seq
(
I
:
eqType
)
(
r
:
seq
I
)
(
P
:
pred
I
)
(
E1
E2
:
I
->
nat
)
:
(
forall
i
,
i
\
in
r
->
P
i
->
E1
i
<=
E2
i
)
->
\
sum_
(
i
<-
r
|
P
i
)
E1
i
<=
\
sum_
(
i
<-
r
|
P
i
)
E2
i
.
Proof
.
intros
LE
.
rewrite
big_seq_cond
[
\
sum_
(_
<-
_|
P
_)_]
big_seq_cond
.
by
apply
leq_sum
;
move
=>
j
/
andP
[
IN
H
];
apply
LE
.
Qed
.
Lemma
leq_sum1_smaller_range
m
n
(
P
Q
:
pred
nat
)
a
b
:
(
forall
i
,
m
<=
i
<
n
/\
P
i
->
a
<=
i
<
b
/\
Q
i
)
->
\
sum_
(
m
<=
i
<
n
|
P
i
)
1
<=
\
sum_
(
a
<=
i
<
b
|
Q
i
)
1
.
Proof
.
intros
REDUCE
.
rewrite
big_mkcond
.
apply
leq_trans
with
(
n
:=
\
sum_
(
a
<=
i
<
b
|
Q
i
)
\
sum_
(
m
<=
i'
<
n
|
i'
==
i
)
1
)
.
{
rewrite
(
exchange_big_dep
(
fun
x
=>
true
));
[
simpl
|
by
done
]
.
apply
leq_sum_nat
;
intros
i
LE
_
.
case
TRUE
:
(
P
i
);
last
by
done
.
move
:
(
REDUCE
i
(
conj
LE
TRUE
))
=>
[
LE'
TRUE'
]
.
rewrite
(
big_rem
i
);
last
by
rewrite
mem_index_iota
.
by
rewrite
TRUE'
eq_refl
.
}
{
apply
leq_sum_nat
;
intros
i
LE
TRUE
.
rewrite
big_mkcond
/=.
destruct
(
m
<=
i
<
n
)
eqn
:
LE'
;
last
first
.
{
rewrite
big_nat_cond
big1
;
first
by
done
.
move
=>
i'
/
andP
[
LE''
_];
case
EQ
:
(_
==
_);
last
by
done
.
by
move
:
EQ
=>
/
eqP
EQ
;
subst
;
rewrite
LE''
in
LE'
.
}
rewrite
(
bigD1_seq
i
)
/=
;
[
|
by
rewrite
mem_index_iota
|
by
rewrite
iota_uniq
]
.
rewrite
eq_refl
big1
;
first
by
done
.
by
move
=>
i'
/
negbTE
NEQ
;
rewrite
NEQ
.
}
Qed
.
End
ExtraLemmasSumMax
.
(*Section ProvingFinType.
Lemma seq_sub_choiceMixin : choiceMixin (seq_sub l).
Proof.
destruct (seq_sub_enum l) eqn:SUB.
{
set f := fun (P: pred (seq_sub l)) (x: nat) => @None (seq_sub l).
exists f; last by done.
{
intros P n x.
have IN := mem_seq_sub_enum x.
by rewrite SUB in_nil in IN.
}
{
move => P [x PROP].
have IN := mem_seq_sub_enum x.
by rewrite SUB in_nil in IN.
}
}
{
set NTH := nth s (seq_sub_enum l).
set f := fun (P: pred (seq_sub l)) (x: nat) => if P (NTH x) then Some (NTH x) else None.
exists f.
{
unfold f; intros P n x.
by case: ifP => [PROP | //]; case => <-.
}
{
move => P [x PROP].
exists (index x (seq_sub_enum l)).
by rewrite /f /NTH nth_index ?PROP; last by apply mem_seq_sub_enum.
}
{
by intros P Q EQ x; rewrite /f -EQ.
}
}
Qed.
Canonical seq_sub_choiceType :=
Eval hnf in ChoiceType (seq_sub l) (seq_sub_choiceMixin).
Definition seq_sub_countMixin' := CountMixin (@seq_sub_pickleK T l).
Canonical seq_sub_countType := @Countable.pack _ seq_sub_countMixin' seq_sub_choiceType _ id.
Lemma seq_sub_enumP: Finite.axiom (seq_sub_enum l).
Proof.
intros x.
rewrite count_uniq_mem ?undup_uniq //.
by apply/eqP; rewrite eqb1; apply mem_seq_sub_enum.
Qed.
Definition seq_sub_finMixin := @FinMixin seq_sub_countType (seq_sub_enum l) seq_sub_enumP.
Canonical seq_sub_finType :=
@Finite.pack (seq_sub l) [eqMixin of (seq_sub l)] seq_sub_finMixin seq_sub_choiceType _ id _ id.
End ProvingFinType.*)
This diff is collapsed.
Click to expand it.
util/sum.v
+
0
−
137
View file @
aac7e9a3
...
...
@@ -81,140 +81,3 @@ Section SumArithmetic.
Qed
.
End
SumArithmetic
.
(* Additional lemmas about sum and max big operators. *)
Section
ExtraLemmasSumMax
.
Lemma
leq_big_max
I
r
(
P
:
pred
I
)
(
E1
E2
:
I
->
nat
)
:
(
forall
i
,
P
i
->
E1
i
<=
E2
i
)
->
\
max_
(
i
<-
r
|
P
i
)
E1
i
<=
\
max_
(
i
<-
r
|
P
i
)
E2
i
.
Proof
.
move
=>
leE12
;
elim
/
big_ind2
:
_
=>
//
m1
m2
n1
n2
.
intros
LE1
LE2
;
rewrite
leq_max
;
unfold
maxn
.
by
destruct
(
m2
<
n2
)
eqn
:
LT
;
[
by
apply
/
orP
;
right
|
by
apply
/
orP
;
left
]
.
Qed
.
Lemma
bigmax_ord_ltn_identity
n
:
n
>
0
->
\
max_
(
i
<
n
)
i
<
n
.
Proof
.
intros
LT
.
destruct
n
;
first
by
rewrite
ltn0
in
LT
.
clear
LT
.
induction
n
;
first
by
rewrite
big_ord_recr
/=
big_ord0
maxn0
.
rewrite
big_ord_recr
/=.
unfold
maxn
at
1
;
desf
.
by
apply
leq_trans
with
(
n
:=
n
.
+
1
)
.
Qed
.
Lemma
bigmax_ltn_ord
n
(
P
:
pred
nat
)
(
i0
:
'
I_n
)
:
P
i0
->
\
max_
(
i
<
n
|
P
i
)
i
<
n
.
Proof
.
intros
LT
.
destruct
n
;
first
by
destruct
i0
as
[
i0
P0
];
move
:
(
P0
)
=>
P0'
;
rewrite
ltn0
in
P0'
.
rewrite
big_mkcond
.
apply
leq_ltn_trans
with
(
n
:=
\
max_
(
i
<
n
.
+
1
)
i
)
.
{
apply
/
bigmax_leqP
;
ins
.
destruct
(
P
i
);
last
by
done
.
by
apply
leq_bigmax_cond
.
}
by
apply
bigmax_ord_ltn_identity
.
Qed
.
Lemma
bigmax_pred
n
(
P
:
pred
nat
)
(
i0
:
'
I_n
)
:
P
(
i0
)
->
P
(
\
max_
(
i
<
n
|
P
i
)
i
)
.
Proof
.
intros
PRED
.
induction
n
.
{
destruct
i0
as
[
i0
P0
]
.
by
move
:
(
P0
)
=>
P1
;
rewrite
ltn0
in
P1
.
}
rewrite
big_mkcond
big_ord_recr
/=
;
desf
.
{
destruct
n
;
first
by
rewrite
big_ord0
maxn0
.
unfold
maxn
at
1
;
desf
.
exfalso
.
apply
negbT
in
Heq0
;
move
:
Heq0
=>
/
negP
BUG
.
apply
BUG
.
apply
leq_ltn_trans
with
(
n
:=
\
max_
(
i
<
n
.
+
1
)
i
)
.
{
apply
/
bigmax_leqP
;
ins
.
destruct
(
P
i
);
last
by
done
.
by
apply
leq_bigmax_cond
.
}
by
apply
bigmax_ord_ltn_identity
.
}
{
rewrite
maxn0
.
rewrite
-
big_mkcond
/=.
have
LT
:
i0
<
n
.
{
rewrite
ltn_neqAle
;
apply
/
andP
;
split
;
last
by
rewrite
-
ltnS
;
apply
ltn_ord
.
apply
/
negP
;
move
=>
/
eqP
BUG
.
by
rewrite
-
BUG
PRED
in
Heq
.
}
by
rewrite
(
IHn
(
Ordinal
LT
))
.
}
Qed
.
Lemma
sum_nat_eq0_nat
(
T
:
eqType
)
(
F
:
T
->
nat
)
(
r
:
seq
T
)
:
all
(
fun
x
=>
F
x
==
0
)
r
=
(
\
sum_
(
i
<-
r
)
F
i
==
0
)
.
Proof
.
destruct
(
all
(
fun
x
=>
F
x
==
0
)
r
)
eqn
:
ZERO
.
{
move
:
ZERO
=>
/
allP
ZERO
;
rewrite
-
leqn0
.
rewrite
big_seq_cond
(
eq_bigr
(
fun
x
=>
0
));
first
by
rewrite
big_const_seq
iter_addn
mul0n
addn0
leqnn
.
intro
i
;
rewrite
andbT
;
intros
IN
.
specialize
(
ZERO
i
);
rewrite
IN
in
ZERO
.
by
move
:
ZERO
=>
/
implyP
ZERO
;
apply
/
eqP
;
apply
ZERO
.
}
{
apply
negbT
in
ZERO
;
rewrite
-
has_predC
in
ZERO
.
move
:
ZERO
=>
/
hasP
ZERO
;
destruct
ZERO
as
[
x
IN
NEQ
];
simpl
in
NEQ
.
rewrite
(
big_rem
x
)
/=
;
last
by
done
.
symmetry
;
apply
negbTE
;
rewrite
neq_ltn
;
apply
/
orP
;
right
.
apply
leq_trans
with
(
n
:=
F
x
);
last
by
apply
leq_addr
.
by
rewrite
lt0n
.
}
Qed
.
Lemma
extend_sum
:
forall
t1
t2
t1'
t2'
F
,
t1'
<=
t1
->
t2
<=
t2'
->
\
sum_
(
t1
<=
t
<
t2
)
F
t
<=
\
sum_
(
t1'
<=
t
<
t2'
)
F
t
.
Proof
.
intros
t1
t2
t1'
t2'
F
LE1
LE2
.
destruct
(
t1
<=
t2
)
eqn
:
LE12
;
last
by
apply
negbT
in
LE12
;
rewrite
-
ltnNge
in
LE12
;
rewrite
big_geq
//
ltnW
.
rewrite
->
big_cat_nat
with
(
m
:=
t1'
)
(
n
:=
t1
);
try
(
by
done
);
simpl
;
last
by
apply
leq_trans
with
(
n
:=
t2
)
.
rewrite
->
big_cat_nat
with
(
p
:=
t2'
)
(
n
:=
t2
);
try
(
by
done
);
simpl
.
by
rewrite
addnC
-
addnA
;
apply
leq_addr
.
Qed
.
Lemma
leq_sum_nat
m
n
(
P
:
pred
nat
)
(
E1
E2
:
nat
->
nat
)
:
(
forall
i
,
m
<=
i
<
n
->
P
i
->
E1
i
<=
E2
i
)
->
\
sum_
(
m
<=
i
<
n
|
P
i
)
E1
i
<=
\
sum_
(
m
<=
i
<
n
|
P
i
)
E2
i
.
Proof
.
intros
LE
.
rewrite
big_nat_cond
[
\
sum_
(_
<=
_
<
_|
P
_)_]
big_nat_cond
.
by
apply
leq_sum
;
move
=>
j
/
andP
[
IN
H
];
apply
LE
.
Qed
.
Lemma
leq_sum_seq
(
I
:
eqType
)
(
r
:
seq
I
)
(
P
:
pred
I
)
(
E1
E2
:
I
->
nat
)
:
(
forall
i
,
i
\
in
r
->
P
i
->
E1
i
<=
E2
i
)
->
\
sum_
(
i
<-
r
|
P
i
)
E1
i
<=
\
sum_
(
i
<-
r
|
P
i
)
E2
i
.
Proof
.
intros
LE
.
rewrite
big_seq_cond
[
\
sum_
(_
<-
_|
P
_)_]
big_seq_cond
.
by
apply
leq_sum
;
move
=>
j
/
andP
[
IN
H
];
apply
LE
.
Qed
.
End
ExtraLemmasSumMax
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment