Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PROSA - Formally Proven Schedulability Analysis
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Lasse Blaauwbroek
PROSA - Formally Proven Schedulability Analysis
Commits
ef337843
Commit
ef337843
authored
9 years ago
by
Felipe Cerqueira
Browse files
Options
Downloads
Patches
Plain Diff
Working on FP proof
parent
9a28e271
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
BertognaResponseTimeDefs.v
+58
-10
58 additions, 10 deletions
BertognaResponseTimeDefs.v
helper.v
+33
-0
33 additions, 0 deletions
helper.v
with
91 additions
and
10 deletions
BertognaResponseTimeDefs.v
+
58
−
10
View file @
ef337843
...
...
@@ -905,11 +905,11 @@ Module ResponseTimeAnalysis.
Section
Proof
.
(* Assume that higher_eq_priority is a
n
order
relation
. *)
(* Assume that higher_eq_priority is a
total
order
over the task set
. *)
Hypothesis
H_reflexive
:
reflexive
higher_eq_priority
.
Hypothesis
H_transitive
:
transitive
higher_eq_priority
.
Hypothesis
H_unique_priorities
:
antisymmetric_over_seq
higher_eq_priority
ts
.
Hypothesis
H_unique_priorities
:
antisymmetric
higher_eq_priority
.
Hypothesis
H_total
:
total
higher_eq_priority
.
(* Assume the task set has no duplicates, ... *)
Hypothesis
H_ts_is_a_set
:
uniq
ts
.
...
...
@@ -1115,7 +1115,9 @@ Module ResponseTimeAnalysis.
H_global_scheduling_invariant
into
INVARIANT
,
H_valid_policy
into
VALIDhp
,
H_sorted_ts
into
SORT
,
H_transitive
into
TRANS
,
H_unique_priorities
into
UNIQ
,
H_total
into
TOTAL
,
H_all_jobs_from_taskset
into
ALLJOBS
,
H_test_passes
into
TEST
.
...
...
@@ -1124,15 +1126,49 @@ Module ResponseTimeAnalysis.
move
:
TEST
=>
/
eqP
TEST
.
unfold
R_list
in
TEST
.
clear
SORT
ALLJOBS
H_reflexive
UNIQ
H_ts_is_a_set
.
clear
ALLJOBS
H_reflexive
H_ts_is_a_set
.
have
CONV
:=
rt_rec_converges
.
(*generalize dependent j.
generalize dependent tsk.
destruct ts as [| tsk0 hp_tasks]; first by intro t; rewrite in_nil.
desf; rename l into hp_bounds.
set R0 := per_task_rta tsk0 hp_bounds (max_steps tsk0).
assert (INbounds: forall hp_tsk,
hp_tsk \in ts ->
exists R_tsk,
(hp_tsk, R_tsk) \in R_list).
{
admit.
}
cut (
forall (hp_tsk : task_eqType) (R : nat_eqType),
(hp_tsk, R) \in (tsk0, R0) :: hp_bounds ->
forall j : JobIn arr_seq,
job_task j = hp_tsk ->
service rate sched j (job_arrival j + job_deadline j ) == job_cost j).
{
intros CUT; ins.
specialize (INbounds tsk INtsk); des.
by apply (CUT tsk R_tsk INbounds).
}
induction hp_bounds as [| (tsk_i, R_i) hp_tasks'].
{
(* Base case: lowest-priority task. *)
intros hp_tsk R; rewrite mem_seq1; move/eqP => EQ j JOBj.
}*)
generalize
dependent
j
.
generalize
dependent
tsk
.
induction
ts
as
[|
tsk_i
hp_tasks
]
.
{
(* Base case: empty taskset. *)
by
intros
tsk
;
rewrite
in_nil
.
}
{
...
...
@@ -1140,13 +1176,25 @@ Module ResponseTimeAnalysis.
intros
tsk
INtsk
;
rewrite
in_cons
in
INtsk
.
move
:
INtsk
=>
/
orP
INtsk
;
des
;
last
first
.
{
desf
;
apply
IHhp_tasks
;
last
by
ins
.
desf
;
apply
IHhp_tasks
;
try
(
by
ins
)
.
by
red
;
ins
;
apply
TASKPARAMS
;
rewrite
in_cons
;
apply
/
orP
;
right
.
by
ins
;
apply
RESTR
;
rewrite
in_cons
;
apply
/
orP
;
right
.
ins
.
simpl
in
INVARIANT
.
apply
INVARIANT
.
rewrite
count_cons
.
capply
INVARIANT
.
ins
;
exploit
(
TASKPARAMS
tsk0
);
[
by
rewrite
in_cons
;
apply
/
orP
;
right
|
ins
;
des
]
.
ins
.
apply
TASKPARAMS
.
admit
.
admit
.
admit
.
admit
.
{
intros
tsk0
j
t
HP0
JOB0
BACK0
.
ins
;
exploit
(
INVARIANT
tsk0
j
t
);
try
(
by
ins
);
[
by
rewrite
in_cons
;
apply
/
orP
;
right
|
intro
INV
]
.
assert
(
NOINTERF
:
is_interfering_task_fp
tsk0
higher_eq_priority
tsk_i
=
false
)
.
{
apply
negbTE
;
rewrite
negb_and
;
apply
/
orP
;
left
.
move
:
SORT
=>
SORT
.
apply
order_path_min
in
SORT
;
first
by
move
:
SORT
=>
/
allP
SORT
;
specialize
(
SORT
tsk0
HP0
)
.
by
apply
comp_relation_trans
.
}
by
rewrite
NOINTERF
andFb
add0n
in
INV
.
}
by
simpl
in
SORT
;
apply
path_sorted
in
SORT
.
by
ins
;
apply
CONV
;
ins
;
rewrite
in_cons
;
apply
/
orP
;
right
.
}
move
:
INtsk
=>
/
eqP
INtsk
;
subst
tsk
.
...
...
This diff is collapsed.
Click to expand it.
helper.v
+
33
−
0
View file @
ef337843
...
...
@@ -425,6 +425,10 @@ Proof.
}
Qed
.
Definition
total_over_seq
{
T
:
eqType
}
(
leT
:
rel
T
)
(
s
:
seq
T
)
:=
forall
x
y
(
INx
:
x
\
in
s
)
(
INy
:
y
\
in
s
),
leT
x
y
\/
leT
y
x
.
Definition
antisymmetric_over_seq
{
T
:
eqType
}
(
leT
:
rel
T
)
(
s
:
seq
T
)
:=
forall
x
y
(
INx
:
x
\
in
s
)
(
INy
:
y
\
in
s
)
(
LEx
:
leT
x
y
)
(
LEy
:
leT
y
x
),
...
...
@@ -513,6 +517,35 @@ Definition comp_relation {T} (R: rel T) : rel T :=
Definition
reverse_sorted
{
T
:
eqType
}
(
R
:
rel
T
)
(
s
:
seq
T
)
:=
sorted
(
comp_relation
R
)
s
.
Lemma
revert_comp_relation
:
forall
{
T
:
eqType
}
(
R
:
rel
T
)
(
ANTI
:
antisymmetric
R
)
(
TOTAL
:
total
R
)
x
y
(
DIFF
:
x
!=
y
),
~~
R
x
y
=
R
y
x
.
Proof
.
unfold
comp_relation
,
antisymmetric
,
total
.
ins
;
specialize
(
ANTI
x
y
)
.
destruct
(
R
x
y
)
eqn
:
Rxy
,
(
R
y
x
)
eqn
:
Ryx
;
try
(
by
ins
)
.
by
exploit
ANTI
;
ins
;
subst
x
;
rewrite
eq_refl
in
DIFF
.
by
specialize
(
TOTAL
x
y
);
move
:
TOTAL
=>
/
orP
TOTAL
;
des
;
rewrite
?Rxy
?Ryx
in
TOTAL
.
Qed
.
Lemma
comp_relation_trans
:
forall
{
T
:
eqType
}
(
R
:
rel
T
)
(
ANTI
:
antisymmetric
R
)
(
TOTAL
:
total
R
)
(
TRANS
:
transitive
R
),
transitive
(
comp_relation
R
)
.
Proof
.
unfold
comp_relation
;
ins
;
red
;
intros
y
x
z
XY
YZ
.
unfold
transitive
,
total
in
*.
destruct
(
R
x
y
)
eqn
:
Rxy
,
(
R
y
x
)
eqn
:
Ryx
,
(
R
x
z
)
eqn
:
Rxz
;
try
(
by
ins
)
.
by
apply
TRANS
with
(
x
:=
y
)
in
Rxz
;
[
by
rewrite
Rxz
in
YZ
|
by
ins
]
.
by
destruct
(
orP
(
TOTAL
x
y
))
as
[
XY'
|
YX'
];
[
by
rewrite
Rxy
in
XY'
|
by
rewrite
Ryx
in
YX'
]
.
Qed
.
Lemma
leq_sum_subseq
:
forall
{
I
:
eqType
}
r1
r2
(
P
:
pred
I
)
F
(
SUB
:
subseq
r1
r2
),
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment