-
Pierre Roux authoredPierre Roux authored
limited.v 5.78 KiB
Require Export prosa.analysis.facts.preemption.job.limited.
(** Furthermore, we assume the task model with fixed preemption points. *)
Require Import prosa.model.task.preemption.limited_preemptive.
Require Import prosa.model.preemption.limited_preemptive.
(** * Platform for Models with Limited Preemptions *)
(** In this section, we prove that instantiation of functions
[job_preemptable and task_preemption_points] to the
limited preemptions model indeed defines a valid preemption model
with bounded non-preemptive regions. *)
Section LimitedPreemptionsModel.
(** Consider any type of tasks ... *)
Context {Task : TaskType}.
Context `{TaskCost Task}.
(** ... and any type of jobs associated with these tasks. *)
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
(** In addition, we assume the existence of functions mapping a
job and task to the sequence of its preemption points. *)
Context `{JobPreemptionPoints Job}.
Context `{TaskPreemptionPoints Task}.
(** Consider any arrival sequence. *)
Variable arr_seq : arrival_sequence Job.
(** Next, consider any ideal uni-processor preemption-aware schedule
of this arrival sequence ... *)
Variable sched : schedule (ideal.processor_state Job).
Hypothesis H_schedule_respects_preemption_model:
schedule_respects_preemption_model arr_seq sched.
(** ... where jobs do not execute before their arrival or after completion. *)
Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched.
Hypothesis H_completed_jobs_dont_execute : completed_jobs_dont_execute sched.
(** Consider an arbitrary task set ts. *)
Variable ts : list Task.
(** Next, we assume that preemption points are defined by the model
with fixed preemption points. *)
Hypothesis H_valid_fixed_preemption_points_model:
valid_fixed_preemption_points_model arr_seq ts.
(** Then we prove that functions [job_preemptable and
task_preemption_points] define a model with bounded non-preemptive
regions. *)
Lemma fixed_preemption_points_model_is_model_with_bounded_nonpreemptive_regions:
model_with_bounded_nonpreemptive_segments arr_seq .
Proof.
intros j ARR.
move: H_valid_fixed_preemption_points_model => [LIM FIX].
move: (LIM) => [BEG [END NDEC]]; move: (FIX) => [A1 [A2 [A3 [A4 A5]]]].
case: (posnP (job_cost j)) => [ZERO|POS].
- split.
rewrite /job_respects_max_nonpreemptive_segment /job_max_nonpreemptive_segment
/lengths_of_segments /parameter.job_preemption_points; rewrite ZERO; simpl.
rewrite /job_preemptable /limited_preemptions_model; erewrite zero_in_preemption_points; eauto 2.
+ move => progr; rewrite ZERO leqn0; move => /andP [_ /eqP LE].
exists 0; rewrite LE; split; first by apply/andP; split.
by eapply zero_in_preemption_points; eauto 2.
- split; last (move => progr /andP [_ LE]; destruct (progr \in job_preemption_points j) eqn:NotIN).
+ rewrite /job_respects_max_nonpreemptive_segment
/job_max_nonpreemptive_segment /lengths_of_segments; erewrite job_parameters_max_np_to_job_limited; eauto.
by apply max_of_dominating_seq; intros; apply A5.
+ exists progr; split; first apply/andP; first split; rewrite ?leq_addr; by done.
+ move: NotIN => /eqP; rewrite eqbF_neg; move => NotIN.
edestruct (work_belongs_to_some_nonpreemptive_segment arr_seq) as [x [SIZE2 N]]; eauto 2. move: N => /andP [N1 N2].
set ptl := nth 0 (job_preemption_points j) x.
set ptr := nth 0 (job_preemption_points j) x.+1.
exists ptr; split; first last.
* by unfold job_preemptable, limited_preemptions_model; apply mem_nth.
* apply/andP; split; first by apply ltnW.
apply leq_trans with (ptl + (job_max_nonpreemptive_segment j - ε) + 1); first last.
-- rewrite addn1 ltn_add2r; apply N1.
-- unfold job_max_nonpreemptive_segment.
rewrite -addnA -leq_subLR -(leq_add2r 1).
rewrite [in X in _ <= X]addnC -leq_subLR.
rewrite !subn1 !addn1 prednK.
{ rewrite -[_.+1.-1]pred_Sn. rewrite /lengths_of_segments.
erewrite job_parameters_max_np_to_job_limited; eauto.
by apply distance_between_neighboring_elements_le_max_distance_in_seq. }
{ rewrite /lengths_of_segments; erewrite job_parameters_max_np_to_job_limited; eauto.
apply max_distance_in_nontrivial_seq_is_positive; first by eauto 2.
exists 0, (job_cost j); repeat split.
- by eapply zero_in_preemption_points; eauto.
- by eapply job_cost_in_nonpreemptive_points; eauto.
- by apply/eqP; rewrite eq_sym -lt0n; apply POS.
}
Qed.
(** Which together with lemma [valid_fixed_preemption_points_model]
gives us the fact that functions [job_preemptable and
task_preemption_points] defines a valid preemption model with
bounded non-preemptive regions. *)
Corollary fixed_preemption_points_model_is_valid_model_with_bounded_nonpreemptive_regions:
valid_model_with_bounded_nonpreemptive_segments arr_seq sched.
Proof.
split.
- by apply valid_fixed_preemption_points_model_lemma; destruct H_valid_fixed_preemption_points_model.
- by apply fixed_preemption_points_model_is_model_with_bounded_nonpreemptive_regions.
Qed.
End LimitedPreemptionsModel.
(** We add the above lemma into a "Hint Database" basic_facts, so Coq will be able to apply them automatically. *)
Hint Resolve
valid_fixed_preemption_points_model_lemma
fixed_preemption_points_model_is_model_with_bounded_nonpreemptive_regions
fixed_preemption_points_model_is_valid_model_with_bounded_nonpreemptive_regions : basic_facts.