Skip to content
Snippets Groups Projects
minmax.v 16.20 KiB
Require Import rt.util.tactics rt.util.notation rt.util.sorting rt.util.nat rt.util.list.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.

Section MinMaxSeq.

  Section ArgGeneric.

    Context {T1 T2: eqType}.

    Variable rel: T2 -> T2 -> bool.
    Variable F: T1 -> T2.
    
    Fixpoint seq_argmin (l: seq T1) :=
      if l is x :: l' then
        if seq_argmin l' is Some y then
          if rel (F x) (F y) then Some x else Some y
        else Some x
      else None.

    Fixpoint seq_argmax (l: seq T1) :=
      if l is x :: l' then
        if seq_argmax l' is Some y then
          if rel (F y) (F x) then Some x else Some y
        else Some x
      else None.
    
    Section Lemmas.

      Lemma seq_argmin_exists:
        forall l x,
          x \in l ->
          seq_argmin l != None.
      Proof.
        induction l; first by done.
        intros x; rewrite in_cons.
        move => /orP [/eqP EQ | IN] /=;
          first by subst; destruct (seq_argmin l); first by case: ifP.
        by destruct (seq_argmin l); first by case: ifP.
      Qed.
        
      Lemma seq_argmin_in_seq:
        forall l x,
          seq_argmin l = Some x ->
          x \in l.
      Proof.
        induction l; simpl; first by done.
        intros x ARG.
        destruct (seq_argmin l);
          last by case: ARG => EQ; subst; rewrite in_cons eq_refl.
        destruct (rel (F a) (F s));
          first by case: ARG => EQ; subst; rewrite in_cons eq_refl.
        case: ARG => EQ; subst.
        by rewrite in_cons; apply/orP; right; apply IHl.
      Qed.

      Lemma seq_argmax_exists:
        forall l x,
          x \in l ->
          seq_argmax l != None.
      Proof.
        induction l; first by done.
        intros x; rewrite in_cons.
        move => /orP [/eqP EQ | IN] /=;
          first by subst; destruct (seq_argmax l); first by case: ifP.
        by destruct (seq_argmax l); first by case: ifP.
      Qed.
        
      Lemma seq_argmax_in_seq:
        forall l x,
          seq_argmax l = Some x ->
          x \in l.
      Proof.
        induction l; simpl; first by done.
        intros x ARG.
        destruct (seq_argmax l);
          last by case: ARG => EQ; subst; rewrite in_cons eq_refl.
        destruct (rel (F s) (F a));
          first by case: ARG => EQ; subst; rewrite in_cons eq_refl.
        case: ARG => EQ; subst.
        by rewrite in_cons; apply/orP; right; apply IHl.
      Qed.
      
      Section TotalOrder.

        Hypothesis H_transitive: transitive rel.
        
        Variable l: seq T1.
        Hypothesis H_total_over_list:
          forall x y,
            x \in l ->
            y \in l ->
            rel (F x) (F y) || rel (F y) (F x).

        Lemma seq_argmin_computes_min:
          forall x y,
            seq_argmin l = Some x ->
            y \in l ->
            rel (F x) (F y).
        Proof.
          rename H_transitive into TRANS, H_total_over_list into TOT, l into l'.
          induction l'; first by done.
          intros x y EQmin IN; simpl in EQmin.
          rewrite in_cons in IN.
          move: IN => /orP [/eqP EQ | IN].
          {
            subst; destruct (seq_argmin l') eqn:ARG; last first.
            {
              case: EQmin => EQ; subst.
              by exploit (TOT x x); try (by rewrite in_cons eq_refl); rewrite orbb.
            }
            {
              destruct (rel (F a) (F s)) eqn:REL; case: EQmin => EQ; subst;
                first by exploit (TOT x x); try (by rewrite in_cons eq_refl); rewrite orbb.
              exploit (TOT a x).
              - by rewrite in_cons eq_refl.
              - by rewrite in_cons; apply/orP; right; apply seq_argmin_in_seq.
              - by rewrite REL /=.
            }
          }
          { 
            destruct (seq_argmin l') eqn:ARG.
            {
              destruct (rel (F a) (F s)) eqn:REL; case: EQmin => EQ; subst; last first.
              {
                apply IHl'; [| by done | by done].
                by intros x0 y0 INx INy; apply TOT; rewrite in_cons; apply/orP; right.
              }
              {                
                apply TRANS with (y := F s); first by done.
                apply IHl'; [| by done | by done].
                by intros x0 y0 INx INy; apply TOT; rewrite in_cons; apply/orP; right.
              }
            }
            {
              case: EQmin => EQ; subst.
              by apply seq_argmin_exists in IN; rewrite ARG in IN.
            }
          }
        Qed.
        Lemma seq_argmax_computes_max:
          forall x y,
            seq_argmax l = Some x ->
            y \in l ->
            rel (F y) (F x).
        Proof.
          rename H_transitive into TRANS, H_total_over_list into TOT, l into l'.
          induction l'; first by done.
          intros x y EQmin IN; simpl in EQmin.
          rewrite in_cons in IN.
          move: IN => /orP [/eqP EQ | IN].
          {
            subst; destruct (seq_argmax l') eqn:ARG; last first.
            {
              case: EQmin => EQ; subst.
              by exploit (TOT x x); try (by rewrite in_cons eq_refl); rewrite orbb.
            }
            {
              destruct (rel (F s) (F a)) eqn:REL; case: EQmin => EQ; subst;
                first by exploit (TOT x x); try (by rewrite in_cons eq_refl); rewrite orbb.
              exploit (TOT a x).
              - by rewrite in_cons eq_refl.
              - by rewrite in_cons; apply/orP; right; apply seq_argmax_in_seq.
              - by rewrite REL orbF.
            }
          }
          { 
            destruct (seq_argmax l') eqn:ARG.
            {
              destruct (rel (F s) (F a)) eqn:REL; case: EQmin => EQ; subst; last first.
              {
                apply IHl'; [| by done | by done].
                by intros x0 y0 INx INy; apply TOT; rewrite in_cons; apply/orP; right.
              }
              {                
                apply TRANS with (y := F s); last by done.
                apply IHl'; [| by done | by done].
                by intros x0 y0 INx INy; apply TOT; rewrite in_cons; apply/orP; right.
              }
            }
            {
              case: EQmin => EQ; subst.
              by apply seq_argmax_exists in IN; rewrite ARG in IN.
            }
          }
        Qed.

      End TotalOrder.

    End Lemmas.

  End ArgGeneric.
  
  Section MinGeneric.

    Context {T: eqType}.
    Variable rel: rel T.
    
    Definition seq_min := seq_argmin rel id.
    Definition seq_max := seq_argmax rel id.

    Section Lemmas.

      Lemma seq_min_exists:
        forall l x,
          x \in l ->
          seq_min l != None.
      Proof.
        by apply seq_argmin_exists.
      Qed.
        
      Lemma seq_min_in_seq:
        forall l x,
          seq_min l = Some x ->
          x \in l.
      Proof.
        by apply seq_argmin_in_seq.
      Qed.

      Lemma seq_max_exists:
        forall l x,
          x \in l ->
          seq_max l != None.
      Proof.
        by apply seq_argmax_exists.
      Qed.
        
      Lemma seq_max_in_seq:
        forall l x,
          seq_max l = Some x ->
          x \in l.
      Proof.
        by apply seq_argmax_in_seq.
      Qed.
      
      Section TotalOrder.

        Hypothesis H_transitive: transitive rel.
        
        Variable l: seq T.
        Hypothesis H_total_over_list:
          forall x y,
            x \in l ->
            y \in l ->
            rel x y || rel y x.

        Lemma seq_min_computes_min:
          forall x y,
            seq_min l = Some x ->
            y \in l ->
            rel x y.
        Proof.
          by apply seq_argmin_computes_min.
        Qed.

        Lemma seq_max_computes_max:
          forall x y,
            seq_max l = Some x ->
            y \in l ->
            rel y x.
        Proof.
          by apply seq_argmax_computes_max.
        Qed.

      End TotalOrder.

    End Lemmas.
        
  End MinGeneric.

  Section ArgNat.
      
    Context {T: eqType}.

    Variable F: T -> nat.

    Definition seq_argmin_nat := seq_argmin leq F.
    Definition seq_argmax_nat := seq_argmax leq F.

    Section Lemmas.

      Lemma seq_argmin_nat_exists:
        forall l x,
          x \in l ->
          seq_argmin_nat l != None.
      Proof.
        by apply seq_argmin_exists.
      Qed.
        
      Lemma seq_argmin_nat_in_seq:
        forall l x,
          seq_argmin_nat l = Some x ->
          x \in l.
      Proof.
        by apply seq_argmin_in_seq.
      Qed.

      Lemma seq_argmax_nat_exists:
        forall l x,
          x \in l ->
          seq_argmax_nat l != None.
      Proof.
        by apply seq_argmax_exists.
      Qed.
        
      Lemma seq_argmax_nat_in_seq:
        forall l x,
          seq_argmax_nat l = Some x ->
          x \in l.
      Proof.
        by apply seq_argmax_in_seq.
      Qed.
      
      Section TotalOrder.

        Lemma seq_argmin_nat_computes_min:
          forall l x y,
            seq_argmin_nat l = Some x ->
            y \in l ->
            F x <= F y.
        Proof.
          intros l x y SOME IN.
          apply seq_argmin_computes_min with (l0 := l); try (by done).
          - by intros x1 x2 x3; apply leq_trans.
          - by intros x1 x2 IN1 IN2; apply leq_total.
        Qed.

        Lemma seq_argmax_nat_computes_max:
          forall l x y,
            seq_argmax_nat l = Some x ->
            y \in l ->
            F x >= F y.
        Proof.
          intros l x y SOME IN.
          apply seq_argmax_computes_max with (l0 := l); try (by done).
          - by intros x1 x2 x3; apply leq_trans.
          - by intros x1 x2 IN1 IN2; apply leq_total.
        Qed.

      End TotalOrder.

    End Lemmas.
        
  End ArgNat.
  
  Section MinNat.

    Definition seq_min_nat := seq_argmin leq id.
    Definition seq_max_nat := seq_argmax leq id.
    Section Lemmas.

      Lemma seq_min_nat_exists:
        forall l x,
          x \in l ->
          seq_min_nat l != None.
      Proof.
        by apply seq_argmin_exists.
      Qed.
        
      Lemma seq_min_nat_in_seq:
        forall l x,
          seq_min_nat l = Some x ->
          x \in l.
      Proof.
        by apply seq_argmin_in_seq.
      Qed.

      Lemma seq_max_nat_exists:
        forall l x,
          x \in l ->
          seq_max_nat l != None.
      Proof.
        by apply seq_argmax_exists.
      Qed.
        
      Lemma seq_max_nat_in_seq:
        forall l x,
          seq_max_nat l = Some x ->
          x \in l.
      Proof.
        by apply seq_argmax_in_seq.
      Qed.
      
      Section TotalOrder.

        Lemma seq_min_nat_computes_min:
          forall l x y,
            seq_min_nat l = Some x ->
            y \in l ->
            x <= y.
        Proof.
          intros l x y SOME IN.
          apply seq_min_computes_min with (l0 := l); try (by done).
          - by intros x1 x2 x3; apply leq_trans.
          - by intros x1 x2 IN1 IN2; apply leq_total.
        Qed.

        Lemma seq_max_nat_computes_max:
          forall l x y,
            seq_max_nat l = Some x ->
            y \in l ->
            x >= y.
        Proof.
          intros l x y SOME IN.
          apply seq_max_computes_max with (l0 := l); try (by done).
          - by intros x1 x2 x3; apply leq_trans.
          - by intros x1 x2 IN1 IN2; apply leq_total.
        Qed.

      End TotalOrder.

    End Lemmas.
        
  End MinNat.

  Section NatRange.
    
    Definition values_between (a b: nat) :=
      filter (fun x => x >= a) (map (@nat_of_ord _) (enum 'I_b)).

    Lemma mem_values_between a b:
      forall x, x \in values_between a b = (a <= x < b).
    Proof.
      intros x; rewrite mem_filter.
      apply/idP/idP.
      {
        move => /andP [GE IN].
        move: IN => /mapP [x' IN] EQ; subst.
        rewrite mem_enum in IN.
        by apply/andP; split.
      }
      {
        move => /andP [GE LT].
        rewrite GE andTb.
        apply/mapP; exists (Ordinal LT); last by done.
        by rewrite mem_enum.
      }
    Qed.

    Definition min_nat_cond P (a b: nat) :=
      seq_min_nat (filter P (values_between a b)).

    Definition max_nat_cond P (a b: nat) :=
      seq_max_nat (filter P (values_between a b)).

    Lemma min_nat_cond_in_seq:
      forall P a b x,
        min_nat_cond P a b = Some x ->
        a <= x < b /\ P x.
    Proof.
      intros P a b x SOME.
      apply seq_min_nat_in_seq in SOME.
      rewrite mem_filter in SOME; move: SOME => /andP [Px LE].
      by split; first by rewrite mem_values_between in LE.
    Qed.

    Lemma min_nat_cond_computes_min:
      forall P a b x,
        min_nat_cond P a b = Some x ->
        (forall y, a <= y < b -> P y -> x <= y).
    Proof.
      intros P a b x SOME y LE Py.
      apply seq_min_nat_computes_min with (y := y) in SOME; first by done.
      by rewrite mem_filter Py andTb mem_values_between.
    Qed.

    Lemma max_nat_cond_in_seq:
      forall P a b x,
        max_nat_cond P a b = Some x ->
        a <= x < b /\ P x.
    Proof.
      intros P a b x SOME.
      apply seq_max_nat_in_seq in SOME.
      rewrite mem_filter in SOME; move: SOME => /andP [Px LE].
      by split; first by rewrite mem_values_between in LE.
    Qed.

    Lemma max_nat_cond_computes_max:
      forall P a b x,
        max_nat_cond P a b = Some x ->
        (forall y, a <= y < b -> P y -> y <= x).
    Proof.
      intros P a b x SOME y LE Py.
      apply seq_max_nat_computes_max with (y := y) in SOME; first by done.
      by rewrite mem_filter Py andTb mem_values_between.
    Qed.
    
  End NatRange.
End MinMaxSeq.

(* Additional lemmas about max. *)
Section ExtraLemmas.
  
  Lemma leq_big_max I r (P : pred I) (E1 E2 : I -> nat) :
    (forall i, P i -> E1 i <= E2 i) ->
      \max_(i <- r | P i) E1 i <= \max_(i <- r | P i) E2 i.
  Proof.
    move => leE12; elim/big_ind2 : _ => // m1 m2 n1 n2.
    intros LE1 LE2; rewrite leq_max; unfold maxn.
    by destruct (m2 < n2) eqn:LT; [by apply/orP; right | by apply/orP; left].
  Qed.

  Lemma bigmax_ord_ltn_identity n :
    n > 0 ->
    \max_(i < n) i < n.
  Proof.
    intros LT.
    destruct n; first by rewrite ltn0 in LT.
    clear LT.
    induction n; first by rewrite big_ord_recr /= big_ord0 maxn0.
    rewrite big_ord_recr /=.
    unfold maxn at 1; desf.
    by apply leq_trans with (n := n.+1).
  Qed.
    
  Lemma bigmax_ltn_ord n (P : pred nat) (i0: 'I_n) :
    P i0 ->
    \max_(i < n | P i) i < n.
  Proof.
    intros LT.
    destruct n; first by destruct i0 as [i0 P0]; move: (P0) => P0'; rewrite ltn0 in P0'.
    rewrite big_mkcond.
    apply leq_ltn_trans with (n := \max_(i < n.+1) i).
    {
      apply/bigmax_leqP; ins.
      destruct (P i); last by done.
      by apply leq_bigmax_cond.
    }
    by apply bigmax_ord_ltn_identity.
  Qed.

  Lemma bigmax_pred n (P : pred nat) (i0: 'I_n) :
    P (i0) ->
    P (\max_(i < n | P i) i).
  Proof.
    intros PRED.
    induction n.
    {
      destruct i0 as [i0 P0].
      by move: (P0) => P1; rewrite ltn0 in P1. 
    }
    rewrite big_mkcond big_ord_recr /=; desf.
    {
      destruct n; first by rewrite big_ord0 maxn0.
      unfold maxn at 1; desf.
      exfalso.
      apply negbT in Heq0; move: Heq0 => /negP BUG.
      apply BUG. 
      apply leq_ltn_trans with (n := \max_(i < n.+1) i).
      {
        apply/bigmax_leqP; ins.
        destruct (P i); last by done.
        by apply leq_bigmax_cond.
      }
      by apply bigmax_ord_ltn_identity.
    }
    {
      rewrite maxn0.
      rewrite -big_mkcond /=.
      have LT: i0 < n.
      {
        rewrite ltn_neqAle; apply/andP; split;
          last by rewrite -ltnS; apply ltn_ord.
        apply/negP; move => /eqP BUG.
        by rewrite -BUG PRED in Heq.
      }
      by rewrite (IHn (Ordinal LT)).
    }
  Qed.
    
End ExtraLemmas.

Section Kmin.

    Context {T1 T2: eqType}.

    Variable rel: T2 -> T2 -> bool.
    Variable F: T1 -> T2.

    Fixpoint seq_argmin_k (l: seq T1) (k: nat) :=
      if k is S k' then
        if (seq_argmin rel F l) is Some min_x then
          let l_without_min := rem min_x l in
            min_x :: seq_argmin_k l_without_min k'
        else [::]
      else [::].

      Lemma seq_argmin_k_exists:
        forall k l x,
          k > 0 ->
          x \in l ->
          seq_argmin_k l k != [::].
      Proof.
        induction k; first by done.
        move => l x _ IN /=.
        destruct (seq_argmin rel F l) as [|] eqn:MIN; first by done.
        suff NOTNONE: seq_argmin rel F l != None by rewrite MIN in NOTNONE.
        by apply seq_argmin_exists with (x0 := x).
      Qed.
    
End Kmin.