Skip to content
Snippets Groups Projects
Commit 7efdf29a authored by Björn Brandenburg's avatar Björn Brandenburg
Browse files

Remove unused files

parent ae8664ab
No related branches found
No related tags found
No related merge requests found
Pipeline #
(******************************************************************************)
(* c11comp: Coq development attached to the paper *)
(* *)
(* Vafeiadis, Balabonski, Chakraborty, Morisset, and Zappa Nardelli. *)
(* Common compiler optimisations are invalid in the C11 memory model *)
(* and what we can do about it. *)
(* In POPL 2015. *)
(* *)
(* Copyright (c) MPI-SWS and INRIA *)
(* Released under a BSD-style license. See README.txt for details. *)
(******************************************************************************)
(******************************************************************************)
(** * Basic properties of relations *)
(******************************************************************************)
Require Import Vbase List Relations Classical.
Set Implicit Arguments.
(** Definitions of relations *)
(******************************************************************************)
Definition immediate X (rel : relation X) (a b: X) :=
rel a b /\ (forall c (R1: rel a c) (R2: rel c b), False).
Definition irreflexive X (rel : relation X) := forall x, rel x x -> False.
Definition asymmetric X (rel : relation X) := forall x y, rel x y /\ rel y x -> False.
Definition acyclic X (rel : relation X) := irreflexive (clos_trans X rel).
Definition is_total X (cond: X -> Prop) (rel: relation X) :=
forall a (IWa: cond a)
b (IWb: cond b) (NEQ: a <> b),
rel a b \/ rel b a.
Definition restr_subset X (cond: X -> Prop) (rel rel': relation X) :=
forall a (IWa: cond a)
b (IWb: cond b) (REL: rel a b),
rel' a b.
Definition restr_rel X (cond : X -> Prop) (rel : relation X) : relation X :=
fun a b => rel a b /\ cond a /\ cond b.
Definition restr_eq_rel A B (f : A -> B) rel x y :=
rel x y /\ f x = f y.
Definition upward_closed (X: Type) (rel: relation X) (P: X -> Prop) :=
forall x y (REL: rel x y) (POST: P y), P x.
Definition max_elt (X: Type) (rel: relation X) (a: X) :=
forall b (REL: rel a b), False.
Notation "r 'UNION1' ( a , b )" :=
(fun x y => x = a /\ y = b \/ r x y) (at level 100).
Notation "a <--> b" := (same_relation _ a b) (at level 110).
(** Very basic properties of relations *)
(******************************************************************************)
Lemma clos_trans_mon A (r r' : relation A) a b :
clos_trans A r a b ->
(forall a b, r a b -> r' a b) ->
clos_trans A r' a b.
Proof.
induction 1; ins; eauto using clos_trans.
Qed.
Lemma clos_refl_trans_mon A (r r' : relation A) a b :
clos_refl_trans A r a b ->
(forall a b, r a b -> r' a b) ->
clos_refl_trans A r' a b.
Proof.
induction 1; ins; eauto using clos_refl_trans.
Qed.
Lemma clos_refl_transE A r a b :
clos_refl_trans A r a b <-> a = b \/ clos_trans A r a b.
Proof.
split; ins; desf; vauto; induction H; desf; vauto.
Qed.
Lemma clos_trans_in_rt A r a b :
clos_trans A r a b -> clos_refl_trans A r a b.
Proof.
induction 1; vauto.
Qed.
Lemma rt_t_trans A r a b c :
clos_refl_trans A r a b -> clos_trans A r b c -> clos_trans A r a c.
Proof.
ins; induction H; eauto using clos_trans.
Qed.
Lemma t_rt_trans A r a b c :
clos_trans A r a b -> clos_refl_trans A r b c -> clos_trans A r a c.
Proof.
ins; induction H0; eauto using clos_trans.
Qed.
Lemma t_step_rt A R x y :
clos_trans A R x y <-> exists z, R x z /\ clos_refl_trans A R z y.
Proof.
split; ins; desf.
by apply clos_trans_tn1 in H; induction H; desf; eauto using clos_refl_trans.
by rewrite clos_refl_transE in *; desf; eauto using clos_trans.
Qed.
Lemma t_rt_step A R x y :
clos_trans A R x y <-> exists z, clos_refl_trans A R x z /\ R z y.
Proof.
split; ins; desf.
by apply clos_trans_t1n in H; induction H; desf; eauto using clos_refl_trans.
by rewrite clos_refl_transE in *; desf; eauto using clos_trans.
Qed.
Lemma clos_trans_of_transitive A R (T: transitive A R) x y :
clos_trans A R x y -> R x y.
Proof.
induction 1; eauto.
Qed.
Lemma clos_trans_eq :
forall X (rel: relation X) Y (f : X -> Y)
(H: forall a b (SB: rel a b), f a = f b) a b
(C: clos_trans _ rel a b),
f a = f b.
Proof.
ins; induction C; eauto; congruence.
Qed.
Lemma trans_irr_acyclic :
forall A R, irreflexive R -> transitive A R -> acyclic R.
Proof.
eby repeat red; ins; eapply H, clos_trans_of_transitive.
Qed.
Lemma restr_rel_trans :
forall X dom rel, transitive X rel -> transitive X (restr_rel dom rel).
Proof.
unfold restr_rel; red; ins; desf; eauto.
Qed.
Lemma clos_trans_of_clos_trans1 :
forall X rel1 rel2 x y,
clos_trans X (fun a b => clos_trans _ rel1 a b \/ rel2 a b) x y <->
clos_trans X (fun a b => rel1 a b \/ rel2 a b) x y.
Proof.
split; induction 1; desf;
eauto using clos_trans, clos_trans_mon.
Qed.
Lemma upward_clos_trans:
forall X (rel: X -> X -> Prop) P,
upward_closed rel P -> upward_closed (clos_trans _ rel) P.
Proof.
ins; induction 1; by eauto.
Qed.
Lemma max_elt_clos_trans:
forall X rel a b
(hmax: max_elt rel a)
(hclos: clos_trans X rel a b),
False.
Proof.
ins. eapply clos_trans_t1n in hclos. induction hclos; eauto.
Qed.
Lemma is_total_restr :
forall X (dom : X -> Prop) rel,
is_total dom rel ->
is_total dom (restr_rel dom rel).
Proof.
red; ins; eapply H in NEQ; eauto; desf; vauto.
Qed.
Lemma clos_trans_restrD :
forall X rel f x y, clos_trans X (restr_rel f rel) x y -> f x /\ f y.
Proof.
unfold restr_rel; induction 1; ins; desf.
Qed.
Lemma clos_trans_restr_eqD :
forall A rel B (f: A -> B) x y, clos_trans _ (restr_eq_rel f rel) x y -> f x = f y.
Proof.
unfold restr_eq_rel; induction 1; ins; desf; congruence.
Qed.
Lemma irreflexive_inclusion:
forall X (R1 R2: relation X),
inclusion X R1 R2 ->
irreflexive R2 ->
irreflexive R1.
Proof.
unfold irreflexive, inclusion.
by eauto.
Qed.
Lemma clos_trans_inclusion:
forall X (R: relation X),
inclusion X R (clos_trans X R).
Proof.
unfold inclusion. intros.
by econstructor; eauto.
Qed.
Lemma clos_trans_inclusion_clos_refl_trans:
forall X (R: relation X),
inclusion X (clos_trans X R) (clos_refl_trans X R).
Proof.
unfold inclusion. intros.
induction H.
by eauto using rt_step.
by eauto using rt_trans.
Qed.
Lemma clos_trans_monotonic:
forall X (R1 R2: relation X),
inclusion X R1 R2 ->
inclusion X (clos_trans X R1) (clos_trans X R2).
Proof.
intros.
intros x y hR1.
eapply clos_t1n_trans.
eapply clos_trans_t1n in hR1.
induction hR1.
by eauto using clos_t1n_trans, t1n_step.
(* [t1n_trans] is masked by a notation for [clos_t1n_trans] *)
by eauto using clos_t1n_trans, Relation_Operators.t1n_trans.
Qed.
(******************************************************************************)
(** Set up setoid rewriting *)
(******************************************************************************)
Require Import Setoid.
Lemma same_relation_refl: forall A, reflexive _ (same_relation A).
Proof. split; ins. Qed.
Lemma same_relation_sym: forall A, symmetric _ (same_relation A).
Proof. unfold same_relation; split; ins; desf. Qed.
Lemma same_relation_trans: forall A, transitive _ (same_relation A).
Proof. unfold same_relation; split; ins; desf; red; eauto. Qed.
Add Parametric Relation (X : Type) : (relation X) (same_relation X)
reflexivity proved by (@same_relation_refl X)
symmetry proved by (@same_relation_sym X)
transitivity proved by (@same_relation_trans X)
as same_rel.
Add Parametric Morphism X : (@union X) with
signature (@same_relation X) ==> (@same_relation X) ==> (@same_relation X) as union_mor.
Proof.
unfold same_relation, union; ins; desf; split; red; ins; desf; eauto.
Qed.
Add Parametric Morphism X P : (@restr_rel X P) with
signature (@same_relation X) ==> (@same_relation X) as restr_rel_mor.
Proof.
unfold same_relation, restr_rel; ins; desf; split; red; ins; desf; eauto.
Qed.
Add Parametric Morphism X : (@clos_trans X) with
signature (@same_relation X) ==> (@same_relation X) as clos_trans_mor.
Proof.
unfold same_relation; ins; desf; split; red; ins; desf; eauto using clos_trans_mon.
Qed.
Add Parametric Morphism X : (@clos_refl_trans X) with
signature (@same_relation X) ==> (@same_relation X) as clos_relf_trans_mor.
Proof.
unfold same_relation; ins; desf; split; red; ins; desf; eauto using clos_refl_trans_mon.
Qed.
Add Parametric Morphism X : (@irreflexive X) with
signature (@same_relation X) ==> iff as irreflexive_mor.
Proof.
unfold same_relation; ins; desf; split; red; ins; desf; eauto using clos_refl_trans_mon.
Qed.
Add Parametric Morphism X : (@acyclic X) with
signature (@same_relation X) ==> iff as acyclic_mor.
Proof.
unfold acyclic; ins; rewrite H; reflexivity.
Qed.
Lemma same_relation_restr X (f : X -> Prop) rel rel' :
(forall x (CONDx: f x) y (CONDy: f y), rel x y <-> rel' x y) ->
(restr_rel f rel <--> restr_rel f rel').
Proof.
unfold restr_rel; split; red; ins; desf; rewrite H in *; eauto.
Qed.
Lemma union_restr X f rel rel' :
union X (restr_rel f rel) (restr_rel f rel')
<--> restr_rel f (union _ rel rel').
Proof.
split; unfold union, restr_rel, inclusion; ins; desf; eauto.
Qed.
Lemma clos_trans_restr X f rel (UC: upward_closed rel f) :
clos_trans X (restr_rel f rel)
<--> restr_rel f (clos_trans _ rel).
Proof.
split; unfold union, restr_rel, inclusion; ins; desf; eauto.
split; [|by apply clos_trans_restrD in H].
by eapply clos_trans_mon; eauto; unfold restr_rel; ins; desf.
clear H0; apply clos_trans_tn1 in H.
induction H; eauto 10 using clos_trans.
Qed.
(******************************************************************************)
(** ** Lemmas about cycles *)
(******************************************************************************)
Lemma path_decomp_u1 X (rel : relation X) a b c d :
clos_trans X (rel UNION1 (a, b)) c d ->
clos_trans X rel c d \/
clos_refl_trans X rel c a /\ clos_refl_trans X rel b d.
Proof.
induction 1; desf; eauto using clos_trans, clos_refl_trans, clos_trans_in_rt.
Qed.
Lemma cycle_decomp_u1 X (rel : relation X) a b c :
clos_trans X (rel UNION1 (a, b)) c c ->
clos_trans X rel c c \/ clos_refl_trans X rel b a.
Proof.
ins; apply path_decomp_u1 in H; desf; eauto using clos_refl_trans.
Qed.
Lemma path_decomp_u_total :
forall X rel1 dom rel2 (T: is_total dom rel2)
(D: forall a b (REL: rel2 a b), dom a /\ dom b) x y
(C: clos_trans X (fun a b => rel1 a b \/ rel2 a b) x y),
clos_trans X rel1 x y \/
(exists m n,
clos_refl_trans X rel1 x m /\ clos_trans X rel2 m n /\ clos_refl_trans X rel1 n y) \/
(exists m n,
clos_refl_trans X rel1 m n /\ clos_trans X rel2 n m).
Proof.
ins; induction C; desf; eauto 8 using rt_refl, clos_trans.
by right; left; exists m, n; eauto using clos_trans_in_rt, rt_trans.
by right; left; exists m, n; eauto using clos_trans_in_rt, rt_trans.
destruct (classic (m = n0)) as [|NEQ]; desf.
by right; left; exists m0, n; eauto using t_trans, rt_trans.
eapply T in NEQ; desf.
by right; right; exists n0, m; eauto 8 using clos_trans, rt_trans.
by right; left; exists m0, n; eauto 8 using clos_trans, rt_trans.
by apply t_step_rt in IHC0; desf; eapply D in IHC0; desf.
by apply t_rt_step in IHC4; desf; eapply D in IHC6; desf.
Qed.
Lemma cycle_decomp_u_total :
forall X rel1 dom rel2 (T: is_total dom rel2)
(D: forall a b (REL: rel2 a b), dom a /\ dom b) x
(C: clos_trans X (fun a b => rel1 a b \/ rel2 a b) x x),
clos_trans X rel1 x x \/
(exists m n, clos_refl_trans X rel1 m n /\ clos_trans X rel2 n m).
Proof.
ins; exploit path_decomp_u_total; eauto; ins; desf; eauto 8 using rt_trans.
Qed.
Lemma clos_trans_disj_rel :
forall X (rel rel' : relation X)
(DISJ: forall x y (R: rel x y) z (R': rel' y z), False) x y
(R: clos_trans _ rel x y) z
(R': clos_trans _ rel' y z),
False.
Proof.
ins; induction R; eauto; induction R'; eauto.
Qed.
Lemma path_decomp_u_1 :
forall X (rel rel' : relation X)
(DISJ: forall x y (R: rel x y) z (R': rel' y z), False) x y
(T: clos_trans X (union X rel rel') x y),
clos_trans _ rel x y \/ clos_trans _ rel' x y
\/ exists z, clos_trans _ rel' x z /\ clos_trans _ rel z y.
Proof.
unfold union; ins.
induction T; desf; eauto 6 using clos_trans;
try by exfalso; eauto using clos_trans_disj_rel.
Qed.
Lemma cycle_decomp_u_1 :
forall X (rel rel' : relation X)
(DISJ: forall x y (R: rel x y) z (R': rel' y z), False) x
(T: clos_trans X (union X rel rel') x x),
clos_trans _ rel x x \/ clos_trans _ rel' x x.
Proof.
ins; exploit path_decomp_u_1; eauto; ins; desf; eauto.
exfalso; eauto using clos_trans_disj_rel.
Qed.
Lemma cycle_disj :
forall X (rel : relation X)
(DISJ: forall x y (R: rel x y) z (R': rel y z), False) x
(T: clos_trans X rel x x), False.
Proof.
ins; inv T; eauto using clos_trans_disj_rel.
Qed.
Lemma clos_trans_restr_trans_mid :
forall X (rel rel' : relation X) f x y
(A : clos_trans _ (restr_rel f (fun x y => rel x y \/ rel' x y)) x y)
z (B : rel y z) w
(C : clos_trans _ (restr_rel f (fun x y => rel x y \/ rel' x y)) z w),
clos_trans _ (restr_rel f (fun x y => rel x y \/ rel' x y)) x w.
Proof.
ins; eapply t_trans, t_trans; vauto.
eapply t_step; repeat split; eauto.
by apply clos_trans_restrD in A; desc.
by apply clos_trans_restrD in C; desc.
Qed.
Lemma clos_trans_restr_trans_cycle :
forall X (rel rel' : relation X) f x y
(A : clos_trans _ (restr_rel f (fun x y => rel x y \/ rel' x y)) x y)
(B : rel y x),
clos_trans _ (restr_rel f (fun x y => rel x y \/ rel' x y)) x x.
Proof.
ins; eapply t_trans, t_step; eauto.
by red; apply clos_trans_restrD in A; desf; auto.
Qed.
Lemma restr_eq_union :
forall X (rel rel' : relation X) B (f: X -> B) x y
(R: forall x y, rel' x y -> f x = f y),
restr_eq_rel f (fun x y => rel x y \/ rel' x y) x y <->
restr_eq_rel f rel x y \/ rel' x y.
Proof.
unfold restr_eq_rel; ins; intuition.
Qed.
Lemma clos_trans_restr_eq_union :
forall X (rel rel' : relation X) B (f: X -> B)
(R: forall x y, rel' x y -> f x = f y),
clos_trans _ (restr_eq_rel f (fun x y => rel x y \/ rel' x y)) <-->
clos_trans _ (fun x y => restr_eq_rel f rel x y \/ rel' x y).
Proof.
split; red; ins; eapply clos_trans_mon; eauto; ins; instantiate;
rewrite restr_eq_union in *; eauto.
Qed.
Lemma acyclic_mon X (rel rel' : relation X) :
acyclic rel -> inclusion _ rel' rel -> acyclic rel'.
Proof.
eby repeat red; ins; eapply H, clos_trans_mon.
Qed.
(** Extension of a partial order to a total order *)
Section one_extension.
Variable X : Type.
Variable elem : X.
Variable rel : relation X.
Definition one_ext : relation X :=
fun x y =>
clos_trans _ rel x y
\/ clos_refl_trans _ rel x elem /\ ~ clos_refl_trans _ rel y elem.
Lemma one_ext_extends x y : rel x y -> one_ext x y.
Proof. vauto. Qed.
Lemma one_ext_trans : transitive _ one_ext.
Proof.
red; ins; unfold one_ext in *; desf; desf;
intuition eauto using clos_trans_in_rt, t_trans, rt_trans.
Qed.
Lemma one_ext_irr : acyclic rel -> irreflexive one_ext.
Proof.
red; ins; unfold one_ext in *; desf; eauto using clos_trans_in_rt.
Qed.
Lemma one_ext_total_elem :
forall x, x <> elem -> one_ext elem x \/ one_ext x elem.
Proof.
unfold one_ext; ins; rewrite !clos_refl_transE; tauto.
Qed.
End one_extension.
Fixpoint tot_ext X (dom : list X) (rel : relation X) : relation X :=
match dom with
| nil => clos_trans _ rel
| x::l => one_ext x (tot_ext l rel)
end.
Lemma tot_ext_extends :
forall X dom (rel : relation X) x y, rel x y -> tot_ext dom rel x y.
Proof.
induction dom; ins; eauto using t_step, one_ext_extends.
Qed.
Lemma tot_ext_trans : forall X dom rel, transitive X (tot_ext dom rel).
Proof.
induction dom; ins; vauto; apply one_ext_trans.
Qed.
Lemma tot_ext_irr :
forall X (dom : list X) rel, acyclic rel -> irreflexive (tot_ext dom rel).
Proof.
induction dom; ins.
apply one_ext_irr, trans_irr_acyclic; eauto using tot_ext_trans.
Qed.
(*Lemma tot_ext_total :
forall X (dom : list X) rel, is_total (fun x => In x dom) (tot_ext dom rel).
Proof.
induction dom; red; ins; desf.
eapply one_ext_total_elem in NEQ; desf; eauto.
eapply nesym, one_ext_total_elem in NEQ; desf; eauto.
eapply IHdom in NEQ; desf; eauto using one_ext_extends.
Qed.*)
Lemma tot_ext_inv :
forall X dom rel (x y : X),
acyclic rel -> tot_ext dom rel x y -> ~ rel y x.
Proof.
red; ins; eapply tot_ext_irr, tot_ext_trans, tot_ext_extends; eauto.
Qed.
(** Misc properties *)
(******************************************************************************)
Lemma clos_trans_imm :
forall X (R : relation X) (I: irreflexive R)
(T: transitive _ R) L (ND: NoDup L) a b
(D: forall c, R a c -> R c b -> In c L)
(REL: R a b),
clos_trans _ (immediate R) a b.
Proof.
intros until 3; induction ND; ins; vauto.
destruct (classic (R a x /\ R x b)) as [|N]; desf;
[apply t_trans with x|]; eapply IHND; ins;
exploit (D c); eauto; intro; desf; exfalso; eauto.
Qed.
(** Remove duplicate list elements (classical) *)
(******************************************************************************)
Require Import extralib.
Fixpoint undup A dec (l: list A) :=
match l with nil => nil
| x :: l =>
if In_dec dec x l then undup dec l else x :: undup dec l
end.
Lemma In_undup X dec (x: X) l : In x (undup dec l) <-> In x l.
Proof.
induction l; ins; des_if; ins; rewrite IHl; split; ins; desf; vauto.
Qed.
Lemma NoDup_undup X dec (l : list X) : NoDup (undup dec l).
Proof.
induction l; ins; desf; constructor; eauto; rewrite In_undup; eauto.
Qed.
Lemma clos_trans_imm2 :
forall X (dec : forall x y : X, {x = y} + {x <> y})
(R : relation X) (I: irreflexive R)
(T: transitive _ R) L a b
(D: forall c, R a c -> R c b -> In c L)
(REL: R a b),
clos_trans _ (immediate R) a b.
Proof.
ins; eapply clos_trans_imm with (L := undup dec L); ins;
try rewrite In_undup; eauto using NoDup_undup.
Qed.
Lemma total_immediate_unique:
forall X (eq_X_dec: forall (x y: X), {x=y} + {x<>y}) (rel: X -> X -> Prop) (P: X -> Prop)
(Tot: is_total P rel)
a b c (pa: P a) (pb: P b) (pc: P c)
(iac: immediate rel a c)
(ibc: immediate rel b c),
a = b.
Proof.
ins.
destruct (eq_X_dec a b); eauto.
exfalso.
unfold immediate in *; desf.
eapply Tot in n; eauto.
desf; eauto.
Qed.
body { padding: 0px 0px;
margin: 0px 0px;
background-color: white }
#page { display: block;
padding: 0px;
margin: 0px;
padding-bottom: 10px; }
#header { display: block;
position: relative;
padding: 0;
margin: 0;
vertical-align: middle;
border-bottom-style: solid;
border-width: thin }
#header h1 { padding: 0;
margin: 0;}
/* Contents */
#main{ display: block;
padding: 10px;
font-family: sans-serif;
font-size: 100%;
line-height: 100% }
#main h1 { line-height: 95% } /* allow for multi-line headers */
#main a.idref:visited {color : #416DFF; text-decoration : none; }
#main a.idref:link {color : #416DFF; text-decoration : none; }
#main a.idref:hover {text-decoration : none; }
#main a.idref:active {text-decoration : none; }
#main a.modref:visited {color : #416DFF; text-decoration : none; }
#main a.modref:link {color : #416DFF; text-decoration : none; }
#main a.modref:hover {text-decoration : none; }
#main a.modref:active {text-decoration : none; }
#main .keyword { color : #cf1d1d }
#main { color: black }
.section { background-color: rgb(60%,60%,100%);
padding-top: 13px;
padding-bottom: 13px;
padding-left: 3px;
margin-top: 5px;
margin-bottom: 5px;
font-size : 175% }
h2.section { background-color: rgb(80%,80%,100%);
padding-left: 3px;
padding-top: 12px;
padding-bottom: 10px;
font-size : 130% }
h3.section { background-color: rgb(90%,90%,100%);
padding-left: 3px;
padding-top: 7px;
padding-bottom: 7px;
font-size : 115% }
h4.section {
/*
background-color: rgb(80%,80%,80%);
max-width: 20em;
padding-left: 5px;
padding-top: 5px;
padding-bottom: 5px;
*/
background-color: white;
padding-left: 0px;
padding-top: 0px;
padding-bottom: 0px;
font-size : 100%;
font-style : bold;
text-decoration : underline;
}
#main .doc { margin: 0px;
font-family: sans-serif;
font-size: 100%;
line-height: 125%;
max-width: 40em;
color: black;
padding: 10px;
background-color: #90bdff;
border-style: plain}
.inlinecode {
display: inline;
/* font-size: 125%; */
color: #666666;
font-family: monospace }
.doc .inlinecode {
display: inline;
font-size: 120%;
color: rgb(30%,30%,70%);
font-family: monospace }
.doc .inlinecode .id {
color: rgb(30%,30%,70%);
}
.inlinecodenm {
display: inline;
color: #444444;
}
.doc .code {
display: inline;
font-size: 120%;
color: rgb(30%,30%,70%);
font-family: monospace }
.comment {
display: inline;
font-family: monospace;
color: rgb(50%,50%,80%);
}
.code {
display: block;
/* padding-left: 15px; */
font-size: 110%;
font-family: monospace;
}
table.infrule {
border: 0px;
margin-left: 50px;
margin-top: 10px;
margin-bottom: 10px;
}
td.infrule {
font-family: monospace;
text-align: center;
/* color: rgb(35%,35%,70%); */
padding: 0px;
line-height: 100%;
}
tr.infrulemiddle hr {
margin: 1px 0 1px 0;
}
.infrulenamecol {
color: rgb(60%,60%,60%);
font-size: 80%;
padding-left: 1em;
padding-bottom: 0.1em
}
/* Pied de page */
#footer { font-size: 65%;
font-family: sans-serif; }
.id { display: inline; }
.id[type="constructor"] {
color: rgb(60%,0%,0%);
}
.id[type="var"] {
color: rgb(40%,0%,40%);
}
.id[type="variable"] {
color: rgb(40%,0%,40%);
}
.id[type="definition"] {
color: rgb(0%,40%,0%);
}
.id[type="abbreviation"] {
color: rgb(0%,40%,0%);
}
.id[type="lemma"] {
color: rgb(0%,40%,0%);
}
.id[type="instance"] {
color: rgb(0%,40%,0%);
}
.id[type="projection"] {
color: rgb(0%,40%,0%);
}
.id[type="method"] {
color: rgb(0%,40%,0%);
}
.id[type="inductive"] {
color: rgb(0%,0%,80%);
}
.id[type="record"] {
color: rgb(0%,0%,80%);
}
.id[type="class"] {
color: rgb(0%,0%,80%);
}
.id[type="keyword"] {
color : #cf1d1d;
/* color: black; */
}
.inlinecode .id {
color: rgb(0%,0%,0%);
}
/* TOC */
#toc h2 {
padding: 10px;
background-color: rgb(60%,60%,100%);
}
#toc li {
padding-bottom: 8px;
}
/* Index */
#index {
margin: 0;
padding: 0;
width: 100%;
}
#index #frontispiece {
margin: 1em auto;
padding: 1em;
width: 60%;
}
.booktitle { font-size : 140% }
.authors { font-size : 90%;
line-height: 115%; }
.moreauthors { font-size : 60% }
#index #entrance {
text-align: center;
}
#index #entrance .spacer {
margin: 0 30px 0 30px;
}
#index #footer {
position: absolute;
bottom: 0;
text-align: bottom;
}
.paragraph {
height: 0.75em;
}
ul.doclist {
margin-top: 0em;
margin-bottom: 0em;
}
(******************************************************************************)
(* c11comp: Coq development attached to the paper *)
(* *)
(* Vafeiadis, Balabonski, Chakraborty, Morisset, and Zappa Nardelli. *)
(* Common compiler optimisations are invalid in the C11 memory model *)
(* and what we can do about it. *)
(* In POPL 2015. *)
(* *)
(* Copyright (c) MPI-SWS and INRIA *)
(* Released under a BSD-style license. See README.txt for details. *)
(******************************************************************************)
Require Import List Permutation Vbase Classical.
Set Implicit Arguments.
Fixpoint flatten A (l: list (list A)) :=
match l with
| nil => nil
| x :: l' => x ++ flatten l'
end.
Definition disjoint A (l1 l2 : list A) :=
forall a (IN1: In a l1) (IN2: In a l2), False.
Definition appA := app_assoc_reverse.
(** Properties of [In] *)
Lemma In_eq : forall A (a:A) (l:list A), In a (a :: l).
Proof. vauto. Qed.
Lemma In_cons : forall A (a b:A) (l:list A), In b l -> In b (a :: l).
Proof. vauto. Qed.
Lemma In_nil : forall A (a:A), ~ In a nil.
Proof. by red. Qed.
Lemma In_split : forall A x (l:list A), In x l -> exists l1 l2, l = l1++x::l2.
Proof.
induction l; simpl; intros; des; vauto.
- exists nil; vauto.
- destruct IHl; des; try done; eexists (_ :: _); vauto.
Qed.
Lemma In_dec :
forall A (D: forall x y:A, {x = y} + {x <> y}) (a: A) l, {In a l} + {~ In a l}.
Proof.
induction l; vauto; simpl; destruct (D a a0); intuition.
Qed.
Lemma In_appI1 : forall A (x:A) l (IN: In x l) l', In x (l++l').
Proof. induction l; ins; desf; eauto. Qed.
Lemma In_appI2 : forall A (x:A) l' (IN: In x l') l, In x (l++l').
Proof. induction l; ins; desf; eauto. Qed.
Lemma In_appD : forall A (x:A) l l' (IN: In x (l++l')), In x l \/ In x l'.
Proof. induction l; intuition. Qed.
Lemma In_app : forall A (x:A) l l', In x (l++l') <-> In x l \/ In x l'.
Proof. intuition; auto using In_appI1, In_appI2. Qed.
Lemma In_rev : forall A (x: A) l, In x (rev l) <-> In x l.
Proof.
induction l; ins; rewrite In_app, IHl; ins; tauto.
Qed.
Lemma In_revI : forall A (x: A) l (IN: In x l), In x (rev l).
Proof. by intros; apply In_rev. Qed.
Lemma In_revD : forall A (x: A) l (IN: In x (rev l)), In x l.
Proof. by intros; apply In_rev. Qed.
Lemma In_mapI : forall A B (f: A -> B) x l (IN: In x l), In (f x) (map f l).
Proof. induction l; ins; intuition vauto. Qed.
Lemma In_mapD :
forall A B (f: A->B) y l, In y (map f l) -> exists x, f x = y /\ In x l.
Proof.
induction l; ins; intuition; des; eauto.
Qed.
Lemma In_map :
forall A B (f: A->B) y l, In y (map f l) <-> exists x, f x = y /\ In x l.
Proof.
split; intros; des; clarify; auto using In_mapI, In_mapD.
Qed.
Lemma In_filter :
forall A (x:A) f l, In x (filter f l) <-> In x l /\ f x.
Proof. induction l; ins; desf; simpls; intuition; clarify. Qed.
Lemma In_filterI :
forall A x l (IN: In x l) (f: A->bool) (F: f x), In x (filter f l).
Proof. by intros; apply In_filter. Qed.
Lemma In_filterD :
forall A (x:A) f l (D: In x (filter f l)), In x l /\ f x.
Proof. by intros; apply In_filter. Qed.
Lemma In_flatten A (x:A) l :
In x (flatten l) <-> exists y, In x y /\ In y l.
Proof.
induction l; ins; rewrite ?In_app, ?IHl; clear; split; ins; desf; eauto.
Qed.
Hint Resolve In_eq In_cons In_appI1 In_appI2 In_mapI In_revI In_filterI : vlib.
Lemma nodup_one A (x: A) : NoDup (x :: nil).
Proof. vauto. Qed.
Hint Resolve NoDup_nil nodup_one.
Lemma nodup_map:
forall (A B: Type) (f: A -> B) (l: list A),
NoDup l ->
(forall x y, In x l -> In y l -> x <> y -> f x <> f y) ->
NoDup (map f l).
Proof.
induction 1; ins; vauto.
constructor; eauto.
intro; rewrite In_map in *; desf.
edestruct H1; try eapply H2; eauto.
intro; desf.
Qed.
Lemma nodup_append_commut:
forall (A: Type) (a b: list A),
NoDup (a ++ b) -> NoDup (b ++ a).
Proof.
intro A.
assert (forall (x: A) (b: list A) (a: list A),
NoDup (a ++ b) -> ~(In x a) -> ~(In x b) ->
NoDup (a ++ x :: b)).
induction a; simpl; intros.
constructor; auto.
inversion H. constructor. red; intro.
elim (in_app_or _ _ _ H6); intro.
elim H4. apply in_or_app. tauto.
elim H7; intro. subst a. elim H0. left. auto.
elim H4. apply in_or_app. tauto.
auto.
induction a; simpl; intros.
rewrite <- app_nil_end. auto.
inversion H0. apply H. auto.
red; intro; elim H3. apply in_or_app. tauto.
red; intro; elim H3. apply in_or_app. tauto.
Qed.
Lemma nodup_cons A (x: A) l:
NoDup (x :: l) <-> ~ In x l /\ NoDup l.
Proof. split; inversion 1; vauto. Qed.
Lemma nodup_app:
forall (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) <->
NoDup l1 /\ NoDup l2 /\ disjoint l1 l2.
Proof.
induction l1; ins.
by split; ins; desf; vauto.
rewrite !nodup_cons, IHl1, In_app; unfold disjoint.
ins; intuition (subst; eauto).
Qed.
Lemma nodup_append:
forall (A: Type) (l1 l2: list A),
NoDup l1 -> NoDup l2 -> disjoint l1 l2 ->
NoDup (l1 ++ l2).
Proof.
generalize nodup_app; firstorder.
Qed.
Lemma nodup_append_right:
forall (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) -> NoDup l2.
Proof.
generalize nodup_app; firstorder.
Qed.
Lemma nodup_append_left:
forall (A: Type) (l1 l2: list A),
NoDup (l1 ++ l2) -> NoDup l1.
Proof.
generalize nodup_app; firstorder.
Qed.
Lemma NoDup_filter A (l: list A) (ND: NoDup l) f : NoDup (filter f l).
Proof.
induction l; ins; inv ND; desf; eauto using NoDup.
econstructor; eauto; rewrite In_filter; tauto.
Qed.
Hint Resolve NoDup_filter.
Lemma NoDup_eq_one A (x : A) l :
NoDup l -> In x l -> (forall y (IN: In y l), y = x) -> l = x :: nil.
Proof.
destruct l; ins; f_equal; eauto.
inv H; desf; clear H H5; induction l; ins; desf; case H4; eauto using eq_sym.
rewrite IHl in H0; ins; desf; eauto.
Qed.
Lemma Permutation_NoDup A ( l l' : list A) :
Permutation l l' -> NoDup l -> NoDup l'.
Proof.
induction 1; eauto; rewrite !nodup_cons in *; ins; desf; intuition.
eby symmetry in H; eapply H0; eapply Permutation_in.
Qed.
Lemma NoDup_mapD A B (f : A-> B) l :
NoDup (map f l) -> NoDup l.
Proof.
induction l; ins; rewrite !nodup_cons, In_map in *; desf; eauto 8.
Qed.
Lemma perm_from_subset :
forall A (l : list A) l',
NoDup l' ->
(forall x, In x l' -> In x l) ->
exists l'', Permutation l (l' ++ l'').
Proof.
induction l; ins; vauto.
by destruct l'; ins; vauto; exfalso; eauto.
destruct (classic (In a l')).
eapply In_split in H1; desf; rewrite ?nodup_app, ?nodup_cons in *; desf.
destruct (IHl (l1 ++ l2)); ins.
by rewrite ?nodup_app, ?nodup_cons in *; desf; repeat split; ins; red; eauto using In_cons.
by specialize (H0 x); rewrite In_app in *; ins; desf;
destruct (classic (a = x)); subst; try tauto; exfalso; eauto using In_eq.
eexists; rewrite appA in *; ins.
by eapply Permutation_trans, Permutation_middle; eauto.
destruct (IHl l'); eauto; ins.
by destruct (H0 x); auto; ins; subst.
by eexists (a :: _); eapply Permutation_trans, Permutation_middle; eauto.
Qed.
Require Import List Arith Sorting Vbase job task schedule identmp priority helper response_time task_arrival.
Section LiuLayland.
Variable ts: taskset.
Variable sched: schedule.
Variable hp: sched_job_hp_relation.
Variable cpumap: job_mapping.
Hypothesis RM_priority : convert_fp_jldp RM hp.
Definition uniprocessor := ident_mp 1 hp cpumap. (* Uniprocessor system *)
Hypothesis platform : uniprocessor sched.
Hypothesis arr_seq_from_ts: ts_arrival_sequence ts sched. (* Arrival sequence from task set *)
Hypothesis periodic_tasks: periodic_task_model ts sched.
Hypothesis implicit_deadlines: implicit_deadline_model ts.
Hypothesis ts_non_empty: ts <> nil.
Hypothesis ts_sorted_by_prio: StronglySorted RM ts.
Hypothesis job_cost_wcet: forall j t tsk (JOBj: job_task j = tsk) (ARRj: arrives_at sched j t), job_cost j = task_cost tsk.
(*Lemma periodic_arrival_k_times :
forall j tsk (JOBj: job_task j = tsk) t (ARRj: arrives_at sched j t) k,
exists j', << JOBj': job_task j' = tsk >> /\
<< ARRj': arrives_at sched j' (t + k*(task_period tsk)) >>.
Proof.
revert periodic_tasks; unfold periodic_task_model; intros PER; ins; des.
induction k; simpl; des.
by rewrite <- plus_n_O; eauto.
{
apply NEXT in ARRj'; des; subst; rewrite JOBj' in *.
exists j'0; split; eauto using eq_trans.
assert (COMM : t + k * task_period (job_task j) + task_period (job_task j) =
t + (task_period (job_task j) + k * task_period (job_task j))); [by omega |].
rewrite <- COMM; trivial.
}
Qed.*)
(*Lemma sync_release_is_critical_instant :
forall t tsk_i (INi: In tsk_i ts) (SYNC: sync_release ts sched t),
critical_instant uniprocessor tsk_i ts sched t.
Proof.
Lemma hp_task_no_interference :
forall (tsk_i: sporadic_task),
Forall (task_hp tsk_i) ts ->
task_response_time tsk_i (tsk_i :: ts) (task_cost tsk_i).
Proof.
*)
End LiuLayland.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment