Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PROSA - Formally Proven Schedulability Analysis
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
RT-PROOFS
PROSA - Formally Proven Schedulability Analysis
Commits
b3825927
Commit
b3825927
authored
8 years ago
by
Felipe Cerqueira
Browse files
Options
Downloads
Patches
Plain Diff
Add new lemma about sums
parent
429e36eb
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
util/minmax.v
+3
-150
3 additions, 150 deletions
util/minmax.v
util/sum.v
+90
-0
90 additions, 0 deletions
util/sum.v
with
93 additions
and
150 deletions
util/minmax.v
+
3
−
150
View file @
b3825927
...
...
@@ -157,8 +157,8 @@ Section MinMaxSeq.
End
MinMaxSeq
.
(* Additional lemmas about
sum and max big operators
. *)
Section
ExtraLemmas
SumMax
.
(* Additional lemmas about
max
. *)
Section
ExtraLemmas
.
Lemma
leq_big_max
I
r
(
P
:
pred
I
)
(
E1
E2
:
I
->
nat
)
:
(
forall
i
,
P
i
->
E1
i
<=
E2
i
)
->
...
...
@@ -236,152 +236,5 @@ Section ExtraLemmasSumMax.
by
rewrite
(
IHn
(
Ordinal
LT
))
.
}
Qed
.
Lemma
sum_nat_eq0_nat
(
T
:
eqType
)
(
F
:
T
->
nat
)
(
r
:
seq
T
)
:
all
(
fun
x
=>
F
x
==
0
)
r
=
(
\
sum_
(
i
<-
r
)
F
i
==
0
)
.
Proof
.
destruct
(
all
(
fun
x
=>
F
x
==
0
)
r
)
eqn
:
ZERO
.
{
move
:
ZERO
=>
/
allP
ZERO
;
rewrite
-
leqn0
.
rewrite
big_seq_cond
(
eq_bigr
(
fun
x
=>
0
));
first
by
rewrite
big_const_seq
iter_addn
mul0n
addn0
leqnn
.
intro
i
;
rewrite
andbT
;
intros
IN
.
specialize
(
ZERO
i
);
rewrite
IN
in
ZERO
.
by
move
:
ZERO
=>
/
implyP
ZERO
;
apply
/
eqP
;
apply
ZERO
.
}
{
apply
negbT
in
ZERO
;
rewrite
-
has_predC
in
ZERO
.
move
:
ZERO
=>
/
hasP
ZERO
;
destruct
ZERO
as
[
x
IN
NEQ
];
simpl
in
NEQ
.
rewrite
(
big_rem
x
)
/=
;
last
by
done
.
symmetry
;
apply
negbTE
;
rewrite
neq_ltn
;
apply
/
orP
;
right
.
apply
leq_trans
with
(
n
:=
F
x
);
last
by
apply
leq_addr
.
by
rewrite
lt0n
.
}
Qed
.
Lemma
extend_sum
:
forall
t1
t2
t1'
t2'
F
,
t1'
<=
t1
->
t2
<=
t2'
->
\
sum_
(
t1
<=
t
<
t2
)
F
t
<=
\
sum_
(
t1'
<=
t
<
t2'
)
F
t
.
Proof
.
intros
t1
t2
t1'
t2'
F
LE1
LE2
.
destruct
(
t1
<=
t2
)
eqn
:
LE12
;
last
by
apply
negbT
in
LE12
;
rewrite
-
ltnNge
in
LE12
;
rewrite
big_geq
//
ltnW
.
rewrite
->
big_cat_nat
with
(
m
:=
t1'
)
(
n
:=
t1
);
try
(
by
done
);
simpl
;
last
by
apply
leq_trans
with
(
n
:=
t2
)
.
rewrite
->
big_cat_nat
with
(
p
:=
t2'
)
(
n
:=
t2
);
try
(
by
done
);
simpl
.
by
rewrite
addnC
-
addnA
;
apply
leq_addr
.
Qed
.
Lemma
leq_sum_nat
m
n
(
P
:
pred
nat
)
(
E1
E2
:
nat
->
nat
)
:
(
forall
i
,
m
<=
i
<
n
->
P
i
->
E1
i
<=
E2
i
)
->
\
sum_
(
m
<=
i
<
n
|
P
i
)
E1
i
<=
\
sum_
(
m
<=
i
<
n
|
P
i
)
E2
i
.
Proof
.
intros
LE
.
rewrite
big_nat_cond
[
\
sum_
(_
<=
_
<
_|
P
_)_]
big_nat_cond
.
by
apply
leq_sum
;
move
=>
j
/
andP
[
IN
H
];
apply
LE
.
Qed
.
Lemma
leq_sum_seq
(
I
:
eqType
)
(
r
:
seq
I
)
(
P
:
pred
I
)
(
E1
E2
:
I
->
nat
)
:
(
forall
i
,
i
\
in
r
->
P
i
->
E1
i
<=
E2
i
)
->
\
sum_
(
i
<-
r
|
P
i
)
E1
i
<=
\
sum_
(
i
<-
r
|
P
i
)
E2
i
.
Proof
.
intros
LE
.
rewrite
big_seq_cond
[
\
sum_
(_
<-
_|
P
_)_]
big_seq_cond
.
by
apply
leq_sum
;
move
=>
j
/
andP
[
IN
H
];
apply
LE
.
Qed
.
Lemma
leq_sum1_smaller_range
m
n
(
P
Q
:
pred
nat
)
a
b
:
(
forall
i
,
m
<=
i
<
n
/\
P
i
->
a
<=
i
<
b
/\
Q
i
)
->
\
sum_
(
m
<=
i
<
n
|
P
i
)
1
<=
\
sum_
(
a
<=
i
<
b
|
Q
i
)
1
.
Proof
.
intros
REDUCE
.
rewrite
big_mkcond
.
apply
leq_trans
with
(
n
:=
\
sum_
(
a
<=
i
<
b
|
Q
i
)
\
sum_
(
m
<=
i'
<
n
|
i'
==
i
)
1
)
.
{
rewrite
(
exchange_big_dep
(
fun
x
=>
true
));
[
simpl
|
by
done
]
.
apply
leq_sum_nat
;
intros
i
LE
_
.
case
TRUE
:
(
P
i
);
last
by
done
.
move
:
(
REDUCE
i
(
conj
LE
TRUE
))
=>
[
LE'
TRUE'
]
.
rewrite
(
big_rem
i
);
last
by
rewrite
mem_index_iota
.
by
rewrite
TRUE'
eq_refl
.
}
{
apply
leq_sum_nat
;
intros
i
LE
TRUE
.
rewrite
big_mkcond
/=.
destruct
(
m
<=
i
<
n
)
eqn
:
LE'
;
last
first
.
{
rewrite
big_nat_cond
big1
;
first
by
done
.
move
=>
i'
/
andP
[
LE''
_];
case
EQ
:
(_
==
_);
last
by
done
.
by
move
:
EQ
=>
/
eqP
EQ
;
subst
;
rewrite
LE''
in
LE'
.
}
rewrite
(
bigD1_seq
i
)
/=
;
[
|
by
rewrite
mem_index_iota
|
by
rewrite
iota_uniq
]
.
rewrite
eq_refl
big1
;
first
by
done
.
by
move
=>
i'
/
negbTE
NEQ
;
rewrite
NEQ
.
}
Qed
.
End
ExtraLemmasSumMax
.
(*Section ProvingFinType.
Lemma seq_sub_choiceMixin : choiceMixin (seq_sub l).
Proof.
destruct (seq_sub_enum l) eqn:SUB.
{
set f := fun (P: pred (seq_sub l)) (x: nat) => @None (seq_sub l).
exists f; last by done.
{
intros P n x.
have IN := mem_seq_sub_enum x.
by rewrite SUB in_nil in IN.
}
{
move => P [x PROP].
have IN := mem_seq_sub_enum x.
by rewrite SUB in_nil in IN.
}
}
{
set NTH := nth s (seq_sub_enum l).
set f := fun (P: pred (seq_sub l)) (x: nat) => if P (NTH x) then Some (NTH x) else None.
exists f.
{
unfold f; intros P n x.
by case: ifP => [PROP | //]; case => <-.
}
{
move => P [x PROP].
exists (index x (seq_sub_enum l)).
by rewrite /f /NTH nth_index ?PROP; last by apply mem_seq_sub_enum.
}
{
by intros P Q EQ x; rewrite /f -EQ.
}
}
Qed.
Canonical seq_sub_choiceType :=
Eval hnf in ChoiceType (seq_sub l) (seq_sub_choiceMixin).
Definition seq_sub_countMixin' := CountMixin (@seq_sub_pickleK T l).
Canonical seq_sub_countType := @Countable.pack _ seq_sub_countMixin' seq_sub_choiceType _ id.
Lemma seq_sub_enumP: Finite.axiom (seq_sub_enum l).
Proof.
intros x.
rewrite count_uniq_mem ?undup_uniq //.
by apply/eqP; rewrite eqb1; apply mem_seq_sub_enum.
Qed.
Definition seq_sub_finMixin := @FinMixin seq_sub_countType (seq_sub_enum l) seq_sub_enumP.
Canonical seq_sub_finType :=
@Finite.pack (seq_sub l) [eqMixin of (seq_sub l)] seq_sub_finMixin seq_sub_choiceType _ id _ id.
End ProvingFinType.*)
End
ExtraLemmas
.
\ No newline at end of file
This diff is collapsed.
Click to expand it.
util/sum.v
+
90
−
0
View file @
b3825927
...
...
@@ -81,3 +81,93 @@ Section SumArithmetic.
Qed
.
End
SumArithmetic
.
(* Additional lemmas about sum. *)
Section
ExtraLemmas
.
Lemma
extend_sum
:
forall
t1
t2
t1'
t2'
F
,
t1'
<=
t1
->
t2
<=
t2'
->
\
sum_
(
t1
<=
t
<
t2
)
F
t
<=
\
sum_
(
t1'
<=
t
<
t2'
)
F
t
.
Proof
.
intros
t1
t2
t1'
t2'
F
LE1
LE2
.
destruct
(
t1
<=
t2
)
eqn
:
LE12
;
last
by
apply
negbT
in
LE12
;
rewrite
-
ltnNge
in
LE12
;
rewrite
big_geq
//
ltnW
.
rewrite
->
big_cat_nat
with
(
m
:=
t1'
)
(
n
:=
t1
);
try
(
by
done
);
simpl
;
last
by
apply
leq_trans
with
(
n
:=
t2
)
.
rewrite
->
big_cat_nat
with
(
p
:=
t2'
)
(
n
:=
t2
);
try
(
by
done
);
simpl
.
by
rewrite
addnC
-
addnA
;
apply
leq_addr
.
Qed
.
Lemma
leq_sum_nat
m
n
(
P
:
pred
nat
)
(
E1
E2
:
nat
->
nat
)
:
(
forall
i
,
m
<=
i
<
n
->
P
i
->
E1
i
<=
E2
i
)
->
\
sum_
(
m
<=
i
<
n
|
P
i
)
E1
i
<=
\
sum_
(
m
<=
i
<
n
|
P
i
)
E2
i
.
Proof
.
intros
LE
.
rewrite
big_nat_cond
[
\
sum_
(_
<=
_
<
_|
P
_)_]
big_nat_cond
.
by
apply
leq_sum
;
move
=>
j
/
andP
[
IN
H
];
apply
LE
.
Qed
.
Lemma
leq_sum_seq
(
I
:
eqType
)
(
r
:
seq
I
)
(
P
:
pred
I
)
(
E1
E2
:
I
->
nat
)
:
(
forall
i
,
i
\
in
r
->
P
i
->
E1
i
<=
E2
i
)
->
\
sum_
(
i
<-
r
|
P
i
)
E1
i
<=
\
sum_
(
i
<-
r
|
P
i
)
E2
i
.
Proof
.
intros
LE
.
rewrite
big_seq_cond
[
\
sum_
(_
<-
_|
P
_)_]
big_seq_cond
.
by
apply
leq_sum
;
move
=>
j
/
andP
[
IN
H
];
apply
LE
.
Qed
.
Lemma
sum_nat_eq0_nat
(
T
:
eqType
)
(
F
:
T
->
nat
)
(
r
:
seq
T
)
:
all
(
fun
x
=>
F
x
==
0
)
r
=
(
\
sum_
(
i
<-
r
)
F
i
==
0
)
.
Proof
.
destruct
(
all
(
fun
x
=>
F
x
==
0
)
r
)
eqn
:
ZERO
.
{
move
:
ZERO
=>
/
allP
ZERO
;
rewrite
-
leqn0
.
rewrite
big_seq_cond
(
eq_bigr
(
fun
x
=>
0
));
first
by
rewrite
big_const_seq
iter_addn
mul0n
addn0
leqnn
.
intro
i
;
rewrite
andbT
;
intros
IN
.
specialize
(
ZERO
i
);
rewrite
IN
in
ZERO
.
by
move
:
ZERO
=>
/
implyP
ZERO
;
apply
/
eqP
;
apply
ZERO
.
}
{
apply
negbT
in
ZERO
;
rewrite
-
has_predC
in
ZERO
.
move
:
ZERO
=>
/
hasP
ZERO
;
destruct
ZERO
as
[
x
IN
NEQ
];
simpl
in
NEQ
.
rewrite
(
big_rem
x
)
/=
;
last
by
done
.
symmetry
;
apply
negbTE
;
rewrite
neq_ltn
;
apply
/
orP
;
right
.
apply
leq_trans
with
(
n
:=
F
x
);
last
by
apply
leq_addr
.
by
rewrite
lt0n
.
}
Qed
.
Lemma
leq_sum1_smaller_range
m
n
(
P
Q
:
pred
nat
)
a
b
:
(
forall
i
,
m
<=
i
<
n
/\
P
i
->
a
<=
i
<
b
/\
Q
i
)
->
\
sum_
(
m
<=
i
<
n
|
P
i
)
1
<=
\
sum_
(
a
<=
i
<
b
|
Q
i
)
1
.
Proof
.
intros
REDUCE
.
rewrite
big_mkcond
.
apply
leq_trans
with
(
n
:=
\
sum_
(
a
<=
i
<
b
|
Q
i
)
\
sum_
(
m
<=
i'
<
n
|
i'
==
i
)
1
)
.
{
rewrite
(
exchange_big_dep
(
fun
x
=>
true
));
[
simpl
|
by
done
]
.
apply
leq_sum_nat
;
intros
i
LE
_
.
case
TRUE
:
(
P
i
);
last
by
done
.
move
:
(
REDUCE
i
(
conj
LE
TRUE
))
=>
[
LE'
TRUE'
]
.
rewrite
(
big_rem
i
);
last
by
rewrite
mem_index_iota
.
by
rewrite
TRUE'
eq_refl
.
}
{
apply
leq_sum_nat
;
intros
i
LE
TRUE
.
rewrite
big_mkcond
/=.
destruct
(
m
<=
i
<
n
)
eqn
:
LE'
;
last
first
.
{
rewrite
big_nat_cond
big1
;
first
by
done
.
move
=>
i'
/
andP
[
LE''
_];
case
EQ
:
(_
==
_);
last
by
done
.
by
move
:
EQ
=>
/
eqP
EQ
;
subst
;
rewrite
LE''
in
LE'
.
}
rewrite
(
bigD1_seq
i
)
/=
;
[
|
by
rewrite
mem_index_iota
|
by
rewrite
iota_uniq
]
.
rewrite
eq_refl
big1
;
first
by
done
.
by
move
=>
i'
/
negbTE
NEQ
;
rewrite
NEQ
.
}
Qed
.
End
ExtraLemmas
.
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment