Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PROSA - Formally Proven Schedulability Analysis
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
RT-PROOFS
PROSA - Formally Proven Schedulability Analysis
Commits
cc47990f
Commit
cc47990f
authored
9 years ago
by
Felipe Cerqueira
Browse files
Options
Downloads
Patches
Plain Diff
Add lemmas about big_cat_ord
parent
afb151ae
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
util_lemmas.v
+67
-0
67 additions, 0 deletions
util_lemmas.v
with
67 additions
and
0 deletions
util_lemmas.v
+
67
−
0
View file @
cc47990f
...
...
@@ -26,6 +26,13 @@ Reserved Notation "\cat_ ( m <= i < n ) F"
Notation
"\cat_ ( m <= i < n ) F"
:=
(
\
big
[
cat
/
[::]]_(
m
<=
i
<
n
)
F
%
N
)
:
nat_scope
.
Reserved
Notation
"\cat_ ( m <= i < n | P ) F"
(
at
level
41
,
F
at
level
41
,
P
at
level
41
,
i
,
m
,
n
at
level
50
,
format
"'[' \cat_ ( m <= i < n | P ) '/ ' F ']'"
)
.
Notation
"\cat_ ( m <= i < n | P ) F"
:=
(
\
big
[
cat
/
[::]]_(
m
<=
i
<
n
|
P
)
F
%
N
)
:
nat_scope
.
Reserved
Notation
"\sum_ ( ( m , n ) <- r ) F"
(
at
level
41
,
F
at
level
41
,
m
,
n
at
level
50
,
format
"'[' \sum_ ( ( m , n ) <- r ) '/ ' F ']'"
)
.
...
...
@@ -68,6 +75,13 @@ Reserved Notation "\cat_ ( i < n ) F"
Notation
"\cat_ ( i < n ) F"
:=
(
\
big
[
cat
/
[::]]_(
i
<
n
)
F
%
N
)
:
nat_scope
.
Reserved
Notation
"\cat_ ( i < n | P ) F"
(
at
level
41
,
F
at
level
41
,
i
,
n
at
level
50
,
format
"'[' \cat_ ( i < n | P ) '/ ' F ']'"
)
.
Notation
"\cat_ ( i < n | P ) F"
:=
(
\
big
[
cat
/
[::]]_(
i
<
n
|
P
)
F
%
N
)
:
nat_scope
.
Reserved
Notation
"x \In A"
(
at
level
70
,
format
"'[hv' x '/ ' \In A ']'"
,
no
associativity
)
.
...
...
@@ -147,6 +161,59 @@ Proof.
[
by
apply
/
andP
;
split
|
by
rewrite
eq_fun_ord_to_nat
]
.
Qed
.
Lemma
mem_bigcat_ord_exists
:
forall
(
T
:
eqType
)
x
n
(
f
:
'
I_n
->
list
T
),
x
\
in
\
cat_
(
i
<
n
)
(
f
i
)
->
exists
i
,
x
\
in
(
f
i
)
.
Proof
.
intros
T
x
n
f
IN
.
induction
n
;
first
by
rewrite
big_ord0
in_nil
in
IN
.
{
rewrite
big_ord_recr
/=
mem_cat
in
IN
.
move
:
IN
=>
/
orP
[
HEAD
|
TAIL
]
.
{
apply
IHn
in
HEAD
;
destruct
HEAD
.
by
eexists
(
widen_ord
_
x0
);
desf
.
}
{
by
exists
ord_max
;
desf
.
}
}
Qed
.
Lemma
bigcat_ord_uniq
:
forall
(
T
:
eqType
)
n
(
f
:
'
I_n
->
list
T
),
(
forall
i
,
uniq
(
f
i
))
->
(
forall
x
i1
i2
,
x
\
in
(
f
i1
)
->
x
\
in
(
f
i2
)
->
i1
=
i2
)
->
uniq
(
\
cat_
(
i
<
n
)
(
f
i
))
.
Proof
.
intros
T
n
f
SINGLE
UNIQ
.
induction
n
;
first
by
rewrite
big_ord0
.
{
rewrite
big_ord_recr
cat_uniq
;
apply
/
andP
;
split
.
{
apply
IHn
;
first
by
done
.
intros
x
i1
i2
IN1
IN2
.
exploit
(
UNIQ
x
);
[
by
apply
IN1
|
by
apply
IN2
|
intro
EQ
;
inversion
EQ
]
.
by
apply
ord_inj
.
}
apply
/
andP
;
split
;
last
by
apply
SINGLE
.
{
rewrite
-
all_predC
;
apply
/
allP
;
intros
x
INx
.
simpl
;
apply
/
negP
;
unfold
not
;
intro
BUG
.
rewrite
-
big_ord_narrow
in
BUG
.
rewrite
big_mkcond
/=
in
BUG
.
have
EX
:=
mem_bigcat_ord_exists
T
x
n
.
+
1
_
.
apply
EX
in
BUG
;
clear
EX
;
desf
.
apply
UNIQ
with
(
i1
:=
ord_max
)
in
BUG
;
last
by
done
.
by
desf
;
unfold
ord_max
in
*
;
rewrite
/=
ltnn
in
Heq
.
}
}
Qed
.
Lemma
addnb
(
b1
b2
:
bool
)
:
(
b1
+
b2
)
!=
0
=
b1
||
b2
.
Proof
.
by
destruct
b1
,
b2
;
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment