Newer
Older
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
(* This file is distributed under the terms of the BSD license. *)
From Coq.QArith Require Import QArith_base Qcanon.
From stdpp Require Export list numbers.
Set Default Proof Using "Type".
Local Open Scope positive.
Class Countable A `{EqDecision A} := {
encode : A → positive;
decode : positive → option A;
decode_encode x : decode (encode x) = Some x
}.
Arguments encode : simpl never.
Arguments decode : simpl never.
Definition encode_nat `{Countable A} (x : A) : nat :=
pred (Pos.to_nat (encode x)).
Definition decode_nat `{Countable A} (i : nat) : option A :=
decode (Pos.of_nat (S i)).
Instance encode_inj `{Countable A} : Inj (=) (=) encode.
intros x y Hxy; apply (inj Some).
by rewrite <-(decode_encode x), Hxy, decode_encode.
Qed.
Instance encode_nat_inj `{Countable A} : Inj (=) (=) encode_nat.
Proof. unfold encode_nat; intros x y Hxy; apply (inj encode); lia. Qed.
Lemma decode_encode_nat `{Countable A} x : decode_nat (encode_nat x) = Some x.
Proof.
pose proof (Pos2Nat.is_pos (encode x)).
unfold decode_nat, encode_nat. rewrite Nat.succ_pred by lia.
by rewrite Pos2Nat.id, decode_encode.
Qed.

Ralf Jung
committed
Context `{Countable A} (P : A → Prop).
Inductive choose_step: relation positive :=
| choose_step_None {p} : decode p = None → choose_step (Psucc p) p
| choose_step_Some {p x} :
decode p = Some x → ¬P x → choose_step (Psucc p) p.
Lemma choose_step_acc : (∃ x, P x) → Acc choose_step 1%positive.
Proof.
intros [x Hx]. cut (∀ i p,
i ≤ encode x → 1 + encode x = p + i → Acc choose_step p).
{ intros help. by apply (help (encode x)). }
induction i as [|i IH] using Pos.peano_ind; intros p ??.
{ constructor. intros j. assert (p = encode x) by lia; subst.
inversion 1 as [? Hd|?? Hd]; subst;
rewrite decode_encode in Hd; congruence. }
constructor. intros j.
inversion 1 as [? Hd|? y Hd]; subst; auto with lia.
Qed.

Ralf Jung
committed
Context `{∀ x, Decision (P x)}.
Fixpoint choose_go {i} (acc : Acc choose_step i) : A :=
match Some_dec (decode i) with
| inleft (x↾Hx) =>
match decide (P x) with
| left _ => x | right H => choose_go (Acc_inv acc (choose_step_Some Hx H))
end
| inright H => choose_go (Acc_inv acc (choose_step_None H))
end.
Fixpoint choose_go_correct {i} (acc : Acc choose_step i) : P (choose_go acc).
Proof. destruct acc; simpl. repeat case_match; auto. Qed.
Fixpoint choose_go_pi {i} (acc1 acc2 : Acc choose_step i) :
choose_go acc1 = choose_go acc2.
Proof. destruct acc1, acc2; simpl; repeat case_match; auto. Qed.
Definition choose (H: ∃ x, P x) : A := choose_go (choose_step_acc H).
Definition choose_correct (H: ∃ x, P x) : P (choose H) := choose_go_correct _.
Definition choose_pi (H1 H2 : ∃ x, P x) :
choose H1 = choose H2 := choose_go_pi _ _.
Definition choice (HA : ∃ x, P x) : { x | P x } := _↾choose_correct HA.
End choice.
Lemma surj_cancel `{Countable A} `{EqDecision B}
(f : A → B) `{!Surj (=) f} : { g : B → A & Cancel (=) f g }.
exists (λ y, choose (λ x, f x = y) (surj f y)).
intros y. by rewrite (choose_correct (λ x, f x = y) (surj f y)).
(** ** Injection *)
Context `{Countable A, EqDecision B}.
Context (f : B → A) (g : A → option B) (fg : ∀ x, g (f x) = Some x).
Program Instance inj_countable : Countable B :=
{| encode y := encode (f y); decode p := x ← decode p; g x |}.
Next Obligation. intros y; simpl; rewrite decode_encode; eauto. Qed.
(** ** Unit *)
Program Instance unit_countable : Countable unit :=
{| encode u := 1; decode p := Some () |}.
Next Obligation. by intros []. Qed.
(** ** Bool *)
Program Instance bool_countable : Countable bool := {|
encode b := if b then 1 else 2;
decode p := Some match p return bool with 1 => true | _ => false end
|}.
Next Obligation. by intros []. Qed.
Program Instance option_countable `{Countable A} : Countable (option A) := {|
encode o := match o with None => 1 | Some x => Pos.succ (encode x) end;
decode p := if decide (p = 1) then Some None else Some <$> decode (Pos.pred p)
|}.
Next Obligation.
intros ??? [x|]; simpl; repeat case_decide; auto with lia.
by rewrite Pos.pred_succ, decode_encode.
Qed.
Program Instance sum_countable `{Countable A} `{Countable B} :
Countable (A + B)%type := {|
encode xy :=
match xy with inl x => (encode x)~0 | inr y => (encode y)~1 end;
decode p :=
match p with
| 1 => None | p~0 => inl <$> decode p | p~1 => inr <$> decode p
end
|}.
Next Obligation. by intros ?????? [x|y]; simpl; rewrite decode_encode. Qed.
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
Fixpoint prod_encode_fst (p : positive) : positive :=
match p with
| 1 => 1
| p~0 => (prod_encode_fst p)~0~0
| p~1 => (prod_encode_fst p)~0~1
end.
Fixpoint prod_encode_snd (p : positive) : positive :=
match p with
| 1 => 1~0
| p~0 => (prod_encode_snd p)~0~0
| p~1 => (prod_encode_snd p)~1~0
end.
Fixpoint prod_encode (p q : positive) : positive :=
match p, q with
| 1, 1 => 1~1
| p~0, 1 => (prod_encode_fst p)~1~0
| p~1, 1 => (prod_encode_fst p)~1~1
| 1, q~0 => (prod_encode_snd q)~0~1
| 1, q~1 => (prod_encode_snd q)~1~1
| p~0, q~0 => (prod_encode p q)~0~0
| p~0, q~1 => (prod_encode p q)~1~0
| p~1, q~0 => (prod_encode p q)~0~1
| p~1, q~1 => (prod_encode p q)~1~1
end.
Fixpoint prod_decode_fst (p : positive) : option positive :=
match p with
| p~0~0 => (~0) <$> prod_decode_fst p
| p~0~1 => Some match prod_decode_fst p with Some q => q~1 | _ => 1 end
| p~1~0 => (~0) <$> prod_decode_fst p
| p~1~1 => Some match prod_decode_fst p with Some q => q~1 | _ => 1 end
| 1~0 => None
| 1~1 => Some 1
| 1 => Some 1
end.
Fixpoint prod_decode_snd (p : positive) : option positive :=
match p with
| p~0~0 => (~0) <$> prod_decode_snd p
| p~0~1 => (~0) <$> prod_decode_snd p
| p~1~0 => Some match prod_decode_snd p with Some q => q~1 | _ => 1 end
| p~1~1 => Some match prod_decode_snd p with Some q => q~1 | _ => 1 end
| 1~0 => Some 1
| 1~1 => Some 1
| 1 => None
end.
Lemma prod_decode_encode_fst p q : prod_decode_fst (prod_encode p q) = Some p.
Proof.
assert (∀ p, prod_decode_fst (prod_encode_fst p) = Some p).
{ intros p'. by induction p'; simplify_option_eq. }
assert (∀ p, prod_decode_fst (prod_encode_snd p) = None).
{ intros p'. by induction p'; simplify_option_eq. }
revert q. by induction p; intros [?|?|]; simplify_option_eq.
Qed.
Lemma prod_decode_encode_snd p q : prod_decode_snd (prod_encode p q) = Some q.
Proof.
assert (∀ p, prod_decode_snd (prod_encode_snd p) = Some p).
{ intros p'. by induction p'; simplify_option_eq. }
assert (∀ p, prod_decode_snd (prod_encode_fst p) = None).
{ intros p'. by induction p'; simplify_option_eq. }
revert q. by induction p; intros [?|?|]; simplify_option_eq.
Qed.
Program Instance prod_countable `{Countable A} `{Countable B} :
Countable (A * B)%type := {|
encode xy := prod_encode (encode (xy.1)) (encode (xy.2));
decode p :=
x ← prod_decode_fst p ≫= decode;
y ← prod_decode_snd p ≫= decode; Some (x, y)
|}.
Next Obligation.
intros ?????? [x y]; simpl.
rewrite prod_decode_encode_fst, prod_decode_encode_snd; simpl.
by rewrite !decode_encode.
(** ** Lists *)
(* Lists are encoded as 1 separated sequences of 0s corresponding to the unary
representation of the elements. *)
Fixpoint list_encode `{Countable A} (acc : positive) (l : list A) : positive :=
match l with
| [] => acc
| x :: l => list_encode (Nat.iter (encode_nat x) (~0) (acc~1)) l
Fixpoint list_decode `{Countable A} (acc : list A)
(n : nat) (p : positive) : option (list A) :=
match p with
| 1 => Some acc
| p~0 => list_decode acc (S n) p
| p~1 => x ← decode_nat n; list_decode (x :: acc) O p
end.
Lemma x0_iter_x1 n acc : Nat.iter n (~0) acc~1 = acc ++ Nat.iter n (~0) 3.
Proof. by induction n; f_equal/=. Qed.
Lemma list_encode_app' `{Countable A} (l1 l2 : list A) acc :
list_encode acc (l1 ++ l2) = list_encode acc l1 ++ list_encode 1 l2.
revert acc; induction l1; simpl; auto.
induction l2 as [|x l IH]; intros acc; simpl; [by rewrite ?(left_id_L _ _)|].
by rewrite !(IH (Nat.iter _ _ _)), (assoc_L _), x0_iter_x1.
Program Instance list_countable `{Countable A} : Countable (list A) :=
{| encode := list_encode 1; decode := list_decode [] 0 |}.
intros A ??; simpl.
assert (∀ m acc n p, list_decode acc n (Nat.iter m (~0) p)
= list_decode acc (n + m) p) as decode_iter.
{ induction m as [|m IH]; intros acc n p; simpl; [by rewrite Nat.add_0_r|].
by rewrite IH, Nat.add_succ_r. }
cut (∀ l acc, list_decode acc 0 (list_encode 1 l) = Some (l ++ acc))%list.
{ by intros help l; rewrite help, (right_id_L _ _). }
induction l as [|x l IH] using @rev_ind; intros acc; [done|].
rewrite list_encode_app'; simpl; rewrite <-x0_iter_x1, decode_iter; simpl.
by rewrite decode_encode_nat; simpl; rewrite IH, <-(assoc_L _).
Lemma list_encode_app `{Countable A} (l1 l2 : list A) :
encode (l1 ++ l2)%list = encode l1 ++ encode l2.
Proof. apply list_encode_app'. Qed.
Lemma list_encode_cons `{Countable A} x (l : list A) :
encode (x :: l) = Nat.iter (encode_nat x) (~0) 3 ++ encode l.
Proof. apply (list_encode_app' [_]). Qed.
Lemma list_encode_suffix `{Countable A} (l k : list A) :
l `suffix_of` k → ∃ q, encode k = q ++ encode l.
Proof. intros [l' ->]; exists (encode l'); apply list_encode_app. Qed.
Lemma list_encode_suffix_eq `{Countable A} q1 q2 (l1 l2 : list A) :
length l1 = length l2 → q1 ++ encode l1 = q2 ++ encode l2 → l1 = l2.
Proof.
revert q1 q2 l2; induction l1 as [|a1 l1 IH];
intros q1 q2 [|a2 l2] ?; simplify_eq/=; auto.
rewrite !list_encode_cons, !(assoc _); intros Hl.
assert (l1 = l2) as <- by eauto; clear IH; f_equal.
apply (inj encode_nat); apply (inj (++ encode l1)) in Hl; revert Hl; clear.
generalize (encode_nat a2).
induction (encode_nat a1); intros [|?] ?; naive_solver.
Qed.
(** ** Numbers *)
Instance pos_countable : Countable positive :=
{| encode := id; decode := Some; decode_encode x := eq_refl |}.
Program Instance N_countable : Countable N := {|
encode x := match x with N0 => 1 | Npos p => Pos.succ p end;
decode p := if decide (p = 1) then Some 0%N else Some (Npos (Pos.pred p))
|}.
Next Obligation.
intros [|p]; simpl; [done|].
by rewrite decide_False, Pos.pred_succ by (by destruct p).
Qed.
Program Instance Z_countable : Countable Z := {|
encode x := match x with Z0 => 1 | Zpos p => p~0 | Zneg p => p~1 end;
decode p := Some match p with 1 => Z0 | p~0 => Zpos p | p~1 => Zneg p end
|}.
Next Obligation. by intros [|p|p]. Qed.
Program Instance nat_countable : Countable nat :=
{| encode x := encode (N.of_nat x); decode p := N.to_nat <$> decode p |}.
by intros x; lazy beta; rewrite decode_encode; csimpl; rewrite Nat2N.id.
Global Program Instance Qc_countable : Countable Qc :=
inj_countable
(λ p : Qc, let 'Qcmake (x # y) _ := p return _ in (x,y))
(λ q : Z * positive, let '(x,y) := q return _ in Some (Q2Qc (x # y))) _.
Next Obligation.
intros [[x y] Hcan]. f_equal. apply Qc_is_canon. simpl. by rewrite Hcan.
Global Program Instance Qp_countable : Countable Qp :=
inj_countable
Qp_car
(λ p : Qc, guard (0 < p)%Qc as Hp; Some (mk_Qp p Hp)) _.
Next Obligation.
intros [p Hp]. unfold mguard, option_guard; simpl.
case_match; [|done]. f_equal. by apply Qp_eq.
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
(** ** Generic trees *)
Close Scope positive.
Inductive gen_tree (T : Type) : Type :=
| GenLeaf : T → gen_tree T
| GenNode : nat → list (gen_tree T) → gen_tree T.
Arguments GenLeaf {_} _ : assert.
Arguments GenNode {_} _ _ : assert.
Instance gen_tree_dec `{EqDecision T} : EqDecision (gen_tree T).
Proof.
refine (
fix go t1 t2 :=
match t1, t2 with
| GenLeaf x1, GenLeaf x2 => cast_if (decide (x1 = x2))
| GenNode n1 ts1, GenNode n2 ts2 =>
cast_if_and (decide (n1 = n2)) (decide (ts1 = ts2))
| _, _ => right _
end); abstract congruence.
Defined.
Fixpoint gen_tree_to_list {T} (t : gen_tree T) : list (nat * nat + T) :=
match t with
| GenLeaf x => [inr x]
| GenNode n ts => (ts ≫= gen_tree_to_list) ++ [inl (length ts, n)]
end.
Fixpoint gen_tree_of_list {T}
(k : list (gen_tree T)) (l : list (nat * nat + T)) : option (gen_tree T) :=
match l with
| [] => head k
| inr x :: l => gen_tree_of_list (GenLeaf x :: k) l
| inl (len,n) :: l =>
gen_tree_of_list (GenNode n (reverse (take len k)) :: drop len k) l
end.
Lemma gen_tree_of_to_list {T} k l (t : gen_tree T) :
gen_tree_of_list k (gen_tree_to_list t ++ l) = gen_tree_of_list (t :: k) l.
Proof.
revert t k l; fix 1; intros [|n ts] k l; simpl; auto.
trans (gen_tree_of_list (reverse ts ++ k) ([inl (length ts, n)] ++ l)).
- rewrite <-(assoc_L _). revert k. generalize ([inl (length ts, n)] ++ l).
induction ts as [|t ts'' IH]; intros k ts'''; csimpl; auto.
rewrite reverse_cons, <-!(assoc_L _), gen_tree_of_to_list; simpl; auto.
- simpl. by rewrite take_app_alt, drop_app_alt, reverse_involutive
by (by rewrite reverse_length).
Qed.
Program Instance gen_tree_countable `{Countable T} : Countable (gen_tree T) :=
inj_countable gen_tree_to_list (gen_tree_of_list []) _.
Next Obligation.
intros T ?? t.
by rewrite <-(right_id_L [] _ (gen_tree_to_list _)), gen_tree_of_to_list.
Qed.