Newer
Older
Robbert Krebbers
committed
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.
Robbert Krebbers
committed
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.
Robbert Krebbers
committed
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
Robbert Krebbers
committed
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Delimit Scope C_scope with C.
Global Open Scope C_scope.
Robbert Krebbers
committed
(** Introduce some Haskell style like notations. *)
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x ≠ y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x ≠ y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y ≠ x) (only parsing) : C_scope.
Hint Extern 0 (?x = ?x) => reflexivity.
Notation "(→)" := (λ A B, A → B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A → B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A → B) (only parsing) : C_scope.
(at level 65, right associativity, only parsing) : C_scope.
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
Robbert Krebbers
committed
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A ∧ B) (only parsing) : C_scope.
Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A ∨ B) (only parsing) : C_scope.
Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A ↔ B) (only parsing) : C_scope.
Robbert Krebbers
committed
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.
Robbert Krebbers
committed
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers
committed
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
Robbert Krebbers
committed
Ltac solve_propholds :=
match goal with
| |- PropHolds (?P) => apply _
| |- ?P => change (PropHolds P); apply _
Robbert Krebbers
committed
end.
(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.
Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
(iB : Inhabited B) : Inhabited (A * B) :=
match iA, iB with
| populate x, populate y => populate (x,y)
end.
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
match iA with
| populate x => populate (inl x)
end.
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
match iB with
| populate y => populate (inl y)
end.
Instance option_inhabited {A} : Inhabited (option A) := populate None.
Robbert Krebbers
committed
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y ≡ x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x ≡ y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x ≡ y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x ≢ y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y ≢ x) (only parsing) : C_scope.
Robbert Krebbers
committed
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.
(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Instance equiv_default_relation `{Equiv A} : DefaultRelation (≡) | 3.
Hint Extern 0 (_ ≡ _) => reflexivity.
Hint Extern 0 (_ ≡ _) => symmetry; assumption.
Robbert Krebbers
committed
(** ** Operations on collections *)
(** We define operational type classes for the traditional operations and
Robbert Krebbers
committed
relations on collections: the empty collection [∅], the union [(∪)],
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.
Class Union A := union: A → A → A.
Robbert Krebbers
committed
Instance: Params (@union) 2.
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.
Definition union_list `{Empty A}
`{Union A} : list A → A := fold_right (∪) ∅.
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃ l") : C_scope.
Robbert Krebbers
committed
Instance: Params (@intersection) 2.
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.
Class Difference A := difference: A → A → A.
Robbert Krebbers
committed
Instance: Params (@difference) 2.
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.
Robbert Krebbers
committed
Class Singleton A B := singleton: A → B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
(union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.
Robbert Krebbers
committed
Instance: Params (@subseteq) 2.
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X ⊆ Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X ⊈ Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X ⊈ Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y ⊈ X) (only parsing) : C_scope.
Hint Extern 0 (_ ⊆ _) => reflexivity.
Class Subset A := subset: A → A → Prop.
Instance: Params (@subset) 2.
Infix "⊂" := subset (at level 70) : C_scope.
Notation "(⊂)" := subset (only parsing) : C_scope.
Notation "( X ⊂ )" := (subset X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, subset Y X) (only parsing) : C_scope.
Notation "X ⊄ Y" := (¬X ⊂ Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X ⊄ Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X ⊄ Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y ⊄ X) (only parsing) : C_scope.
Robbert Krebbers
committed
Instance: Params (@elem_of) 3.
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x ∈ X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x ∉ X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x ∉ X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x ∉ X) (only parsing) : C_scope.
Class Disjoint A := disjoint : A → A → Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
Notation "( X ⊥)" := (disjoint X) (only parsing) : C_scope.
Notation "(⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
Inductive list_disjoint `{Disjoint A} : list A → Prop :=
| disjoint_nil :
list_disjoint []
| disjoint_cons X Xs :
Forall (⊥ X) Xs →
list_disjoint Xs →
list_disjoint (X :: Xs).
Lemma list_disjoint_cons_inv `{Disjoint A} X Xs :
list_disjoint (X :: Xs) →
Forall (⊥ X) Xs ∧ list_disjoint Xs.
Proof. inversion_clear 1; auto. Qed.
Instance generic_disjoint `{ElemOf A B} : Disjoint B | 100 :=
λ X Y, ∀ x, x ∉ X ∨ x ∉ Y.
Class Filter A B :=
filter: ∀ (P : A → Prop) `{∀ x, Decision (P x)}, B → B.
(* Arguments filter {_ _ _} _ {_} !_ / : simpl nomatch. *)
(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)
(* We use these type classes merely for convenient overloading of notations and
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type → Type) := mret: ∀ {A}, A → M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.
Class MBindD (M : Type → Type) {A B} (f : A → M B) := mbind: M A → M B.
Notation MBind M := (∀ {A B} (f : A → M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
Arguments mbind {_ _ _} _ {_} !_ / : simpl nomatch.
Class MJoin (M : Type → Type) := mjoin: ∀ {A}, M (M A) → M A.
Instance: Params (@mjoin) 3.
Arguments mjoin {_ _ _} !_ / : simpl nomatch.
Class FMapD (M : Type → Type) {A B} (f : A → B) := fmap: M A → M B.
Notation FMap M := (∀ {A B} (f : A → B), FMapD M f)%type.
Instance: Params (@fmap) 6.
Arguments fmap {_ _ _} _ {_} !_ / : simpl nomatch.
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.
Notation "x ← y ; z" := (y ≫= (λ x : _, z))
(at level 65, only parsing, next at level 35, right associativity) : C_scope.
Infix "<$>" := fmap (at level 65, right associativity) : C_scope.
Class MGuard (M : Type → Type) :=
mguard: ∀ P {dec : Decision P} {A}, M A → M A.
Notation "'guard' P ; o" := (mguard P o)
(at level 65, only parsing, next at level 35, right associativity) : C_scope.
Robbert Krebbers
committed
(** ** Operations on maps *)
Robbert Krebbers
committed
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
Robbert Krebbers
committed
The function lookup [m !! k] should yield the element at key [k] in [m]. *)
Class Lookup (K A M : Type) :=
lookup: K → M → option A.
Robbert Krebbers
committed
Instance: Params (@lookup) 4.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
Robbert Krebbers
committed
(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
Class Insert (K A M : Type) :=
insert: K → A → M → M.
Robbert Krebbers
committed
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
(at level 5, right associativity, format "<[ k := a ]>") : C_scope.
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
Robbert Krebbers
committed
Robbert Krebbers
committed
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
Class Delete (K M : Type) :=
delete: K → M → M.
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
Robbert Krebbers
committed
(** The function [alter f k m] should update the value at key [k] using the
Robbert Krebbers
committed
function [f], which is called with the original value. *)
Class AlterD (K A M : Type) (f : A → A) :=
alter: K → M → M.
Notation Alter K A M := (∀ (f : A → A), AlterD K A M f)%type.
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
Robbert Krebbers
committed
(** The function [alter f k m] should update the value at key [k] using the
Robbert Krebbers
committed
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f]
yields [None]. *)
Class PartialAlter (K A M : Type) :=
partial_alter: (option A → option A) → K → M → M.
Robbert Krebbers
committed
Instance: Params (@partial_alter) 4.
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
Robbert Krebbers
committed
(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
Class Dom (K M : Type) :=
dom: ∀ C `{Empty C} `{Union C} `{Singleton K C}, M → C.
Instance: Params (@dom) 7.
Arguments dom _ _ _ _ _ _ _ !_ / : simpl nomatch.
Robbert Krebbers
committed
(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)]
provided that [k] is a member of either [m1] or [m2].*)
Class Merge (A M : Type) :=
merge: (option A → option A → option A) → M → M → M.
Robbert Krebbers
committed
Instance: Params (@merge) 3.
Arguments merge _ _ _ _ !_ !_ / : simpl nomatch.
Robbert Krebbers
committed
(** We lift the insert and delete operation to lists of elements. *)
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
Robbert Krebbers
committed
fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
Robbert Krebbers
committed
fold_right delete m l.
Instance: Params (@delete_list) 3.
Definition insert_consecutive `{Insert nat A M}
(i : nat) (l : list A) (m : M) : M :=
fold_right (λ x f i, <[i:=x]>(f (S i))) (λ _, m) l i.
Instance: Params (@insert_consecutive) 3.
(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
union_with: (A → A → option A) → M → M → M.
Robbert Krebbers
committed
Instance: Params (@union_with) 3.
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
intersection_with: (A → A → option A) → M → M → M.
Robbert Krebbers
committed
Instance: Params (@intersection_with) 3.
Class DifferenceWith (A M : Type) :=
difference_with: (A → A → option A) → M → M → M.
Robbert Krebbers
committed
Instance: Params (@difference_with) 3.
Definition intersection_with_list `{IntersectionWith A M}
(f : A → A → option A) : M → list M → M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.
Robbert Krebbers
committed
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
Class Injective {A B} R S (f : A → B) :=
injective: ∀ x y : A, S (f x) (f y) → R x y.
Class Idempotent {A} R (f : A → A → A) :=
idempotent: ∀ x, R (f x x) x.
Class Commutative {A B} R (f : B → B → A) :=
commutative: ∀ x y, R (f x y) (f y x).
Class LeftId {A} R (i : A) (f : A → A → A) :=
left_id: ∀ x, R (f i x) x.
Class RightId {A} R (i : A) (f : A → A → A) :=
right_id: ∀ x, R (f x i) x.
Class Associative {A} R (f : A → A → A) :=
associative: ∀ x y z, R (f x (f y z)) (f (f x y) z).
Class LeftAbsorb {A} R (i : A) (f : A → A → A) :=
left_absorb: ∀ x, R (f i x) i.
Class RightAbsorb {A} R (i : A) (f : A → A → A) :=
right_absorb: ∀ x, R (f x i) i.
Class AntiSymmetric {A} (R : A → A → Prop) :=
anti_symmetric: ∀ x y, R x y → R y x → x = y.
Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
Arguments anti_symmetric {_} _ {_} _ _ _ _.
Instance: Commutative (↔) (↔).
Proof. red. intuition. Qed.
Instance: Commutative (↔) (∧).
Proof. red. intuition. Qed.
Instance: Associative (↔) (∧).
Proof. red. intuition. Qed.
Instance: Idempotent (↔) (∧).
Proof. red. intuition. Qed.
Instance: Commutative (↔) (∨).
Proof. red. intuition. Qed.
Instance: Associative (↔) (∨).
Proof. red. intuition. Qed.
Instance: Idempotent (↔) (∨).
Proof. red. intuition. Qed.
Instance: LeftId (↔) True (∧).
Proof. red. intuition. Qed.
Instance: RightId (↔) True (∧).
Proof. red. intuition. Qed.
Instance: LeftAbsorb (↔) False (∧).
Proof. red. intuition. Qed.
Instance: RightAbsorb (↔) False (∧).
Proof. red. intuition. Qed.
Instance: LeftId (↔) False (∨).
Proof. red. intuition. Qed.
Instance: RightId (↔) False (∨).
Proof. red. intuition. Qed.
Instance: LeftAbsorb (↔) True (∨).
Proof. red. intuition. Qed.
Instance: RightAbsorb (↔) True (∨).
Proof. red. intuition. Qed.
Instance: LeftId (↔) True impl.
Proof. unfold impl. red. intuition. Qed.
Instance: RightAbsorb (↔) True impl.
Proof. unfold impl. red. intuition. Qed.
Robbert Krebbers
committed
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
Lemma idempotent_eq {A} (f : A → A → A) `{!Idempotent (=) f} x :
f x x = x.
Proof. auto. Qed.
Lemma commutative_eq {A B} (f : B → B → A) `{!Commutative (=) f} x y :
f x y = f y x.
Proof. auto. Qed.
Lemma left_id_eq {A} (i : A) (f : A → A → A) `{!LeftId (=) i f} x :
f i x = x.
Proof. auto. Qed.
Lemma right_id_eq {A} (i : A) (f : A → A → A) `{!RightId (=) i f} x :
f x i = x.
Proof. auto. Qed.
Lemma associative_eq {A} (f : A → A → A) `{!Associative (=) f} x y z :
f x (f y z) = f (f x y) z.
Proof. auto. Qed.
Lemma left_absorb_eq {A} (i : A) (f : A → A → A) `{!LeftAbsorb (=) i f} x :
f i x = i.
Proof. auto. Qed.
Lemma right_absorb_eq {A} (i : A) (f : A → A → A) `{!RightAbsorb (=) i f} x :
f x i = i.
Proof. auto. Qed.
Robbert Krebbers
committed
(** ** Axiomatization of ordered structures *)
(** A pre-order equiped with a smallest element. *)
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} := {
bounded_preorder :>> PreOrder (⊆);
subseteq_empty x : ∅ ⊆ x
}.
Class PartialOrder A `{SubsetEq A} := {
po_preorder :>> PreOrder (⊆);
po_antisym :> AntiSymmetric (⊆)
}.
Robbert Krebbers
committed
(** We do not include equality in the following interfaces so as to avoid the
need for proofs that the relations and operations respect setoid equality.
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} := {
subseteq_union_l x y : x ⊆ x ∪ y;
subseteq_union_r x y : y ⊆ x ∪ y;
union_least x y z : x ⊆ z → y ⊆ z → x ∪ y ⊆ z
}.
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} := {
msl_preorder :>> BoundedPreOrder A;
subseteq_intersection_l x y : x ∩ y ⊆ x;
subseteq_intersection_r x y : x ∩ y ⊆ y;
intersection_greatest x y z : z ⊆ x → z ⊆ y → z ⊆ x ∩ y
}.
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
`{Union A} `{Intersection A} := {
lbl_bjsl :>> BoundedJoinSemiLattice A;
lbl_msl :>> MeetSemiLattice A
}.
Robbert Krebbers
committed
(** ** Axiomatization of collections *)
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
Robbert Krebbers
committed
Instance: Params (@map) 3.
Class SimpleCollection A C `{ElemOf A C}
`{Empty C} `{Singleton A C} `{Union C} := {
Robbert Krebbers
committed
not_elem_of_empty (x : A) : x ∉ ∅;
elem_of_singleton (x y : A) : x ∈ {[ y ]} ↔ x = y;
elem_of_union X Y (x : A) : x ∈ X ∪ Y ↔ x ∈ X ∨ x ∈ Y
}.
Class Collection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
`{Union C} `{Intersection C} `{Difference C} `{IntersectionWith A C} := {
collection_simple :>> SimpleCollection A C;
elem_of_intersection X Y (x : A) : x ∈ X ∩ Y ↔ x ∈ X ∧ x ∈ Y;
elem_of_difference X Y (x : A) : x ∈ X ∖ Y ↔ x ∈ X ∧ x ∉ Y;
elem_of_intersection_with (f : A → A → option A) X Y (x : A) :
x ∈ intersection_with f X Y ↔ ∃ x1 x2, x1 ∈ X ∧ x2 ∈ Y ∧ f x1 x2 = Some x
Robbert Krebbers
committed
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers
committed
Instance: Params (@elements) 3.
(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
| elem_of_list_here (x : A) l : x ∈ x :: l
| elem_of_list_further (x y : A) l : x ∈ l → x ∈ y :: l.
Existing Instance elem_of_list.
Inductive NoDup {A} : list A → Prop :=
| NoDup_nil_2 : NoDup []
| NoDup_cons_2 x l : x ∉ l → NoDup l → NoDup (x :: l).
(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
`{Union C} `{Intersection C} `{Difference C} `{IntersectionWith A C}
`{Filter A C} `{Elements A C} `{∀ x y : A, Decision (x = y)} := {
elem_of_filter X P `{∀ x, Decision (P x)} x :
x ∈ filter P X ↔ P x ∧ x ∈ X;
elements_spec X x : x ∈ X ↔ x ∈ elements X;
Robbert Krebbers
committed
}.
Class Size C := size: C → nat.
Arguments size {_ _} !_ / : simpl nomatch.
Robbert Krebbers
committed
Instance: Params (@size) 2.
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class CollectionMonad M `{∀ A, ElemOf A (M A)}
`{∀ A, Empty (M A)} `{∀ A, Singleton A (M A)} `{∀ A, Union (M A)}
`{!MBind M} `{!MRet M} `{!FMap M} `{!MJoin M} := {
collection_monad_simple A :> SimpleCollection A (M A);
elem_of_bind {A B} (f : A → M B) (X : M A) (x : B) :
x ∈ X ≫= f ↔ ∃ y, x ∈ f y ∧ y ∈ X;
elem_of_ret {A} (x y : A) :
x ∈ mret y ↔ x = y;
elem_of_fmap {A B} (f : A → B) (X : M A) (x : B) :
x ∈ f <$> X ↔ ∃ y, x = f y ∧ y ∈ X;
elem_of_join {A} (X : M (M A)) (x : A) :
x ∈ mjoin X ↔ ∃ Y, x ∈ Y ∧ Y ∈ X
}.
Robbert Krebbers
committed
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers
committed
Instance: Params (@fresh) 3.
Class FreshSpec A C `{ElemOf A C}
`{Empty C} `{Singleton A C} `{Union C} `{Fresh A C} := {
fresh_collection_simple :>> SimpleCollection A C;
Robbert Krebbers
committed
fresh_proper_alt X Y : (∀ x, x ∈ X ↔ x ∈ Y) → fresh X = fresh Y;
Robbert Krebbers
committed
(** * Miscellaneous *)
Lemma proj1_sig_inj {A} (P : A → Prop) x (Px : P x) y (Py : P y) :
x↾Px = y↾Py → x = y.
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
R x y ↔ R y x.
Proof. intuition. Qed.
Robbert Krebbers
committed
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Instance pointwise_reflexive {A} `{R : relation B} :
Reflexive R → Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
Symmetric R → Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
Transitive R → Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Robbert Krebbers
committed
(** ** Products *)
Definition fst_map {A A' B} (f : A → A') (p : A * B) : A' * B :=
(f (fst p), snd p).
Definition snd_map {A B B'} (f : B → B') (p : A * B) : A * B' :=
(fst p, f (snd p)).
Arguments fst_map {_ _ _} _ !_ /.
Arguments snd_map {_ _ _} _ !_ /.
Instance: ∀ {A A' B} (f : A → A'),
Injective (=) (=) f → Injective (=) (=) (@fst_map A A' B f).
Proof.
intros ????? [??] [??]; simpl; intro; f_equal.
* apply (injective f). congruence.
* congruence.
Qed.
Instance: ∀ {A B B'} (f : B → B'),
Injective (=) (=) f → Injective (=) (=) (@snd_map A B B' f).
Proof.
intros ????? [??] [??]; simpl; intro; f_equal.
* congruence.
* apply (injective f). congruence.
Qed.
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
relation (A * B) := λ x y, R1 (fst x) (fst y) ∧ R2 (snd x) (snd y).
Section prod_relation.
Context `{R1 : relation A} `{R2 : relation B}.
Global Instance:
Reflexive R1 → Reflexive R2 → Reflexive (prod_relation R1 R2).
Global Instance:
Symmetric R1 → Symmetric R2 → Symmetric (prod_relation R1 R2).
Global Instance:
Transitive R1 → Transitive R2 → Transitive (prod_relation R1 R2).
Global Instance:
Equivalence R1 → Equivalence R2 → Equivalence (prod_relation R1 R2).
Proof. split; apply _. Qed.
Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
Proof. firstorder eauto. Qed.
Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
Proof. firstorder eauto. Qed.
Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
Proof. firstorder eauto. Qed.
End prod_relation.
Robbert Krebbers
committed
(** ** Other *)
Definition lift_relation {A B} (R : relation A)
(f : B → A) : relation B := λ x y, R (f x) (f y).
Definition lift_relation_equivalence {A B} (R : relation A) (f : B → A) :
Equivalence R → Equivalence (lift_relation R f).
Proof. unfold lift_relation. firstorder auto. Qed.
Hint Extern 0 (Equivalence (lift_relation _ _)) =>
eapply @lift_relation_equivalence : typeclass_instances.
Instance: ∀ A B (x : B), Commutative (=) (λ _ _ : A, x).
Instance: ∀ A (x : A), Associative (=) (λ _ _ : A, x).
Instance left_id_propholds {A} (R : relation A) i f :
LeftId R i f → ∀ x, PropHolds (R (f i x) x).
Instance right_id_propholds {A} (R : relation A) i f :
RightId R i f → ∀ x, PropHolds (R (f x i) x).
Instance idem_propholds {A} (R : relation A) f :
Idempotent R f → ∀ x, PropHolds (R (f x x) x).