Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Arthur Azevedo de Amorim
stdpp
Commits
fcc1f0de
Commit
fcc1f0de
authored
11 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
More efficient conversion of pmap to association lists.
parent
bc659ba4
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/pmap.v
+73
-61
73 additions, 61 deletions
theories/pmap.v
with
73 additions
and
61 deletions
theories/pmap.v
+
73
−
61
View file @
fcc1f0de
...
...
@@ -257,76 +257,84 @@ Lemma Plookup_fmap {A B} (f : A → B) (t : Pmap_raw A) i :
fmap
f
t
!!
i
=
fmap
f
(
t
!!
i
)
.
Proof
.
revert
i
.
induction
t
.
done
.
by
intros
[?|?|];
simpl
.
Qed
.
Fixpoint
Pto_list_raw
{
A
}
(
j
:
positive
)
(
t
:
Pmap_raw
A
)
:
list
(
positive
*
A
)
:=
Fixpoint
Pto_list_raw
{
A
}
(
j
:
positive
)
(
t
:
Pmap_raw
A
)
(
acc
:
list
(
positive
*
A
))
:
list
(
positive
*
A
)
:=
match
t
with
|
PLeaf
=>
[]
|
PNode
l
o
r
=>
default
[]
o
(
λ
x
,
[(
Preverse
j
,
x
)])
++
Pto_list_raw
(
j
~
0
)
l
++
Pto_list_raw
(
j
~
1
)
r
|
PLeaf
=>
acc
|
PNode
l
o
r
=>
default
[]
o
(
λ
x
,
[(
Preverse
j
,
x
)])
++
Pto_list_raw
(
j
~
0
)
l
(
Pto_list_raw
(
j
~
1
)
r
acc
)
end
%
list
.
Lemma
Pelem_of_to_list_aux
{
A
}
(
t
:
Pmap_raw
A
)
j
i
x
:
(
i
,
x
)
∈
Pto_list_raw
j
t
↔
∃
i'
,
i
=
i'
++
Preverse
j
∧
t
!!
i'
=
Some
x
.
Lemma
Pelem_of_to_list
{
A
}
(
t
:
Pmap_raw
A
)
j
i
acc
x
:
(
i
,
x
)
∈
Pto_list_raw
j
t
acc
↔
(
∃
i'
,
i
=
i'
++
Preverse
j
∧
t
!!
i'
=
Some
x
)
∨
(
i
,
x
)
∈
acc
.
Proof
.
split
.
*
revert
j
.
induction
t
as
[|?
IHl
[?|]
?
IHr
];
intros
j
;
simpl
.
+
by
rewrite
?elem_of_nil
.
+
rewrite
elem_of_cons
,
!
elem_of_app
.
intros
[?|[?|?]]
.
-
simplify_equality
.
exists
1
.
by
rewrite
(
left_id_L
1
(
++
))
%
positive
.
-
destruct
(
IHl
(
j
~
0
))
as
(
i'
&
?
&
?);
trivial
;
subst
.
exists
(
i'
~
0
)
.
by
rewrite
Preverse_xO
,
(
associative_L
_)
.
-
destruct
(
IHr
(
j
~
1
))
as
(
i'
&
?
&
?);
trivial
;
subst
.
exists
(
i'
~
1
)
.
by
rewrite
Preverse_xI
,
(
associative_L
_)
.
+
rewrite
!
elem_of_app
.
intros
[?|?]
.
-
destruct
(
IHl
(
j
~
0
))
as
(
i'
&
?
&
?);
trivial
;
subst
.
exists
(
i'
~
0
)
.
by
rewrite
Preverse_xO
,
(
associative_L
_)
.
-
destruct
(
IHr
(
j
~
1
))
as
(
i'
&
?
&
?);
trivial
;
subst
.
exists
(
i'
~
1
)
.
by
rewrite
Preverse_xI
,
(
associative_L
_)
.
*
intros
(
i'
&
?
&
Hi'
);
subst
.
revert
i'
j
Hi'
.
induction
t
as
[|?
IHl
[?|]
?
IHr
];
intros
i
j
;
simpl
.
+
done
.
+
rewrite
elem_of_cons
,
elem_of_app
.
destruct
i
as
[
i
|
i
|];
simpl
in
*.
-
right
.
right
.
specialize
(
IHr
i
(
j
~
1
))
.
rewrite
Preverse_xI
,
(
associative_L
_)
in
IHr
.
auto
.
-
right
.
left
.
specialize
(
IHl
i
(
j
~
0
))
.
rewrite
Preverse_xO
,
(
associative_L
_)
in
IHl
.
auto
.
-
left
.
simplify_equality
.
by
rewrite
(
left_id_L
1
(
++
))
%
positive
.
+
rewrite
elem_of_app
.
destruct
i
as
[
i
|
i
|];
simpl
in
*.
-
right
.
specialize
(
IHr
i
(
j
~
1
))
.
rewrite
Preverse_xI
,
(
associative_L
_)
in
IHr
.
auto
.
-
left
.
specialize
(
IHl
i
(
j
~
0
))
.
rewrite
Preverse_xO
,
(
associative_L
_)
in
IHl
.
auto
.
-
done
.
Qed
.
Lemma
Pelem_of_to_list
{
A
}
(
t
:
Pmap_raw
A
)
i
x
:
(
i
,
x
)
∈
Pto_list_raw
1
t
↔
t
!!
i
=
Some
x
.
Proof
.
rewrite
Pelem_of_to_list_aux
.
split
.
by
intros
(
i'
&
->
&
?)
.
intros
.
by
exists
i
.
{
revert
j
acc
.
induction
t
as
[|
l
IHl
[
y
|]
r
IHr
];
intros
j
acc
;
simpl
.
*
by
right
.
*
rewrite
elem_of_cons
.
intros
[?|?];
simplify_equality
.
{
left
;
exists
1
.
by
rewrite
(
left_id_L
1
(
++
))
%
positive
.
}
destruct
(
IHl
(
j
~
0
)
(
Pto_list_raw
j
~
1
r
acc
))
as
[(
i'
&
->
&
?)|?];
auto
.
{
left
;
exists
(
i'
~
0
)
.
by
rewrite
Preverse_xO
,
(
associative_L
_)
.
}
destruct
(
IHr
(
j
~
1
)
acc
)
as
[(
i'
&
->
&
?)|?];
auto
.
left
;
exists
(
i'
~
1
)
.
by
rewrite
Preverse_xI
,
(
associative_L
_)
.
*
intros
.
destruct
(
IHl
(
j
~
0
)
(
Pto_list_raw
j
~
1
r
acc
))
as
[(
i'
&
->
&
?)|?];
auto
.
{
left
;
exists
(
i'
~
0
)
.
by
rewrite
Preverse_xO
,
(
associative_L
_)
.
}
destruct
(
IHr
(
j
~
1
)
acc
)
as
[(
i'
&
->
&
?)|?];
auto
.
left
;
exists
(
i'
~
1
)
.
by
rewrite
Preverse_xI
,
(
associative_L
_)
.
}
revert
t
j
i
acc
.
assert
(
∀
t
j
i
acc
,
(
i
,
x
)
∈
acc
→
(
i
,
x
)
∈
Pto_list_raw
j
t
acc
)
as
help
.
{
intros
t
;
induction
t
as
[|
l
IHl
[
y
|]
r
IHr
];
intros
j
i
acc
;
simpl
;
rewrite
?elem_of_cons
;
auto
.
}
intros
t
j
?
acc
[(
i
&
->
&
Hi
)|?];
[|
by
auto
]
.
revert
j
i
acc
Hi
.
induction
t
as
[|
l
IHl
[
y
|]
r
IHr
];
intros
j
i
acc
?;
simpl
.
*
done
.
*
rewrite
elem_of_cons
.
destruct
i
as
[
i
|
i
|];
simplify_equality'
.
+
right
.
apply
help
.
specialize
(
IHr
(
j
~
1
)
i
)
.
rewrite
Preverse_xI
,
(
associative_L
_)
in
IHr
.
by
apply
IHr
.
+
right
.
specialize
(
IHl
(
j
~
0
)
i
)
.
rewrite
Preverse_xO
,
(
associative_L
_)
in
IHl
.
by
apply
IHl
.
+
left
.
by
rewrite
(
left_id_L
1
(
++
))
%
positive
.
*
destruct
i
as
[
i
|
i
|];
simplify_equality'
.
+
apply
help
.
specialize
(
IHr
(
j
~
1
)
i
)
.
rewrite
Preverse_xI
,
(
associative_L
_)
in
IHr
.
by
apply
IHr
.
+
specialize
(
IHl
(
j
~
0
)
i
)
.
rewrite
Preverse_xO
,
(
associative_L
_)
in
IHl
.
by
apply
IHl
.
Qed
.
Lemma
Pto_list_nodup
{
A
}
j
(
t
:
Pmap_raw
A
)
:
NoDup
(
Pto_list_raw
j
t
)
.
Lemma
Pto_list_nodup
{
A
}
j
(
t
:
Pmap_raw
A
)
acc
:
(
∀
i
x
,
(
i
++
Preverse
j
,
x
)
∈
acc
→
t
!!
i
=
None
)
→
NoDup
acc
→
NoDup
(
Pto_list_raw
j
t
acc
)
.
Proof
.
revert
j
.
induction
t
as
[|?
IHl
[?|]
?
IHr
];
simpl
.
*
constructor
.
*
intros
.
rewrite
NoDup_cons
,
NoDup_app
.
split_ands
;
trivial
.
+
rewrite
elem_of_app
,
!
Pelem_of_to_list_aux
.
intros
[(
i
&
Hi
&
?)|(
i
&
Hi
&
?)]
.
-
rewrite
Preverse_xO
in
Hi
.
apply
(
f_equal
Plength
)
in
Hi
.
rewrite
!
Papp_length
in
Hi
.
simpl
in
Hi
.
lia
.
-
rewrite
Preverse_xI
in
Hi
.
apply
(
f_equal
Plength
)
in
Hi
.
rewrite
!
Papp_length
in
Hi
.
simpl
in
Hi
.
lia
.
+
intros
[??]
.
rewrite
!
Pelem_of_to_list_aux
.
intros
(
i1
&
?
&
?)
(
i2
&
Hi
&
?);
subst
.
rewrite
Preverse_xO
,
Preverse_xI
,
!
(
associative_L
_)
in
Hi
.
by
apply
(
injective
(
++
_))
in
Hi
.
*
intros
.
rewrite
NoDup_app
.
split_ands
;
trivial
.
intros
[??]
.
rewrite
!
Pelem_of_to_list_aux
.
intros
(
i1
&
?
&
?)
(
i2
&
Hi
&
?);
subst
.
rewrite
Preverse_xO
,
Preverse_xI
,
!
(
associative_L
_)
in
Hi
.
by
apply
(
injective
(
++
_))
in
Hi
.
revert
j
acc
.
induction
t
as
[|
l
IHl
[
y
|]
r
IHr
];
simpl
;
intros
j
acc
Hin
?
.
*
done
.
*
repeat
constructor
.
{
rewrite
Pelem_of_to_list
.
intros
[(
i
&
Hi
&
?)|
Hj
]
.
{
apply
(
f_equal
Plength
)
in
Hi
.
rewrite
Preverse_xO
,
!
Papp_length
in
Hi
;
simpl
in
*
;
lia
.
}
rewrite
Pelem_of_to_list
in
Hj
.
destruct
Hj
as
[(
i
&
Hi
&
?)|
Hj
]
.
{
apply
(
f_equal
Plength
)
in
Hi
.
rewrite
Preverse_xI
,
!
Papp_length
in
Hi
;
simpl
in
*
;
lia
.
}
specialize
(
Hin
1
y
)
.
rewrite
(
left_id_L
1
(
++
))
%
positive
in
Hin
.
discriminate
(
Hin
Hj
)
.
}
apply
IHl
.
{
intros
i
x
.
rewrite
Pelem_of_to_list
.
intros
[(?
&
Hi
&
?)|
Hi
]
.
+
rewrite
Preverse_xO
,
Preverse_xI
,
!
(
associative_L
_)
in
Hi
.
by
apply
(
injective
(
++
_))
in
Hi
.
+
apply
(
Hin
(
i
~
0
)
x
)
.
by
rewrite
Preverse_xO
,
(
associative_L
_)
in
Hi
.
}
apply
IHr
;
auto
.
intros
i
x
Hi
.
apply
(
Hin
(
i
~
1
)
x
)
.
by
rewrite
Preverse_xI
,
(
associative_L
_)
in
Hi
.
*
apply
IHl
.
{
intros
i
x
.
rewrite
Pelem_of_to_list
.
intros
[(?
&
Hi
&
?)|
Hi
]
.
+
rewrite
Preverse_xO
,
Preverse_xI
,
!
(
associative_L
_)
in
Hi
.
by
apply
(
injective
(
++
_))
in
Hi
.
+
apply
(
Hin
(
i
~
0
)
x
)
.
by
rewrite
Preverse_xO
,
(
associative_L
_)
in
Hi
.
}
apply
IHr
;
auto
.
intros
i
x
Hi
.
apply
(
Hin
(
i
~
1
)
x
)
.
by
rewrite
Preverse_xI
,
(
associative_L
_)
in
Hi
.
Qed
.
Global
Instance
Pto_list
{
A
}
:
FinMapToList
positive
A
(
Pmap
A
)
:=
λ
t
,
Pto_list_raw
1
(
`
t
)
.
λ
t
,
Pto_list_raw
1
(
`
t
)
[]
.
Fixpoint
Pmerge_aux
`
(
f
:
option
A
→
option
B
)
(
t
:
Pmap_raw
A
)
:
Pmap_raw
B
:=
match
t
with
...
...
@@ -385,7 +393,11 @@ Proof.
*
intros
??
[??]
??
.
by
apply
Plookup_alter_ne
.
*
intros
???
[??]
.
by
apply
Plookup_fmap
.
*
intros
?
[??]
.
apply
Pto_list_nodup
.
*
intros
?
[??]
.
apply
Pelem_of_to_list
.
+
intros
??
.
by
rewrite
elem_of_nil
.
+
constructor
.
*
intros
?
[??]
i
x
;
unfold
map_to_list
,
Pto_list
.
rewrite
Pelem_of_to_list
,
elem_of_nil
.
split
.
by
intros
[(?
&
->
&
?)|]
.
by
left
;
exists
i
.
*
intros
???
??
[??]
[??]
?
.
by
apply
Pmerge_spec
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment