Skip to content
Snippets Groups Projects
Select Git revision
  • coq-stdpp-1.0
  • master default protected
  • ralf/options
  • robbert/cbn
  • robbert/from_option
  • robbert/tc_opaque
  • coq-stdpp-1.4.0
  • coq-stdpp-1.3.0
  • coq-stdpp-1.2.1
  • coq-stdpp-1.2.0
  • coq-stdpp-1.1.0
  • coq-stdpp-1.0.0
12 results
You can move around the graph by using the arrow keys.
Created with Raphaël 2.2.023Nov222120191817161510727Oct134328Sep27212014929Aug24221917842127Jul25232220121153130Jun26231814131May30292723429Apr1311730Mar292322211110543227Feb2625242322212019171615141311109842127Jan222018161412422Dec2115118420Nov19181716113Feb110Jun5221May22Apr1615Mar225Feb2416138130Jan29272523Dec181623Nov1569Oct86230Sep251613126326Aug22976410Jul425Jun23171676524May22429Sep27Aug2115141224Jun1721May15121172Apr25Mar1424Feb221919Jan512Nov19Oct104Sep30Aug29242121Jun1411Merge branch 'nclose_subseteq' into 'master' Some tweaks to minimal.Make some arguments explicit that could not be infered.More set_Forall and set_Exists stuff for finite sets.Make nclose an explicit coercion.Comment on commit 44cfd7d3.Patch naive_solver to deal with Coq bug #2901.Function to convert a multiset into a gset.prove fmap_Some_setoidmake done and fast_done more consistent in behaviorMore properties and set_solver for filter.Move the defs of set_Forall and set_Exists out of the section.More generic definition of minimal that also for for anti-symmetric relations.More type class opacity for multisets.A generic filter operation on finite collections.Prove f <$> to_gmap x X = to_gmap (f x) X.Show that ⊆ on multisets is decidable.Prove to_gmap y (dom _ m) = const y <$> m.Minimal elements in a set.More multiset properties.Also treat 009-013 as whitespace in the intro patterns parsers.More big_opMS lemmas.Show that gmultiset is a simple collection.Don't use Let outside of a sectionChange order of eassumption and reflexivity in fast_doneSimplify Fix_F_proper.Prove that Fix_F is proper.Decidable equality of Qp.Replace deprecated appcontext -> context.improve coq 8.6 compatibilityFormalization of multisets.Prove map_to_list {[i:=x]} = [(i,x)].Countable instances for pmap and gmap.Remove Existing Class Is_true.Multiplications of fractions.tactics: rename auto_proper => auto_equivimprove f_equiv docMake everything compile with Coq 8.6tweak the Qp lemmasAdd lemmas about Qp and fraction
Loading