main.py 2.23 KiB
"""main.py"""
import argparse
import numpy as np
import torch
from solver import Solver
from utils import str2bool
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
init_seed = 1
torch.manual_seed(init_seed)
torch.cuda.manual_seed(init_seed)
np.random.seed(init_seed)
np.set_printoptions(precision=4)
torch.set_printoptions(precision=4)
def main(args):
net = Solver(args)
if args.train:
net.train()
else:
net.traverse()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='toy Beta-VAE')
parser.add_argument('--train', default=True, type=str2bool, help='train or traverse')
parser.add_argument('--cuda', default=True, type=str2bool, help='enable cuda')
parser.add_argument('--max_iter', default=1e6, type=int, help='maximum training iteration')
parser.add_argument('--batch_size', default=64, type=int, help='batch size')
parser.add_argument('--z_dim', default=32, type=int, help='dimension of the representation z')
parser.add_argument('--beta', default=6.4, type=float, help='beta parameter for KL-term')
parser.add_argument('--lr', default=1e-4, type=float, help='learning rate')
parser.add_argument('--beta1', default=0.5, type=float, help='Adam optimizer beta1')
parser.add_argument('--beta2', default=0.9, type=float, help='Adam optimizer beta2')
parser.add_argument('--dset_dir', default='data', type=str, help='dataset directory')
parser.add_argument('--dataset', default='CelebA', type=str, help='dataset name')
parser.add_argument('--image_size', default=64, type=int, help='image size. now only (64,64) is supported')
parser.add_argument('--num_workers', default=2, type=int, help='dataloader num_workers')
parser.add_argument('--viz_on', default=True, type=str2bool, help='enable visdom visualization')
parser.add_argument('--viz_name', default='main', type=str, help='visdom env name')
parser.add_argument('--viz_port', default=8097, type=str, help='visdom port number')
parser.add_argument('--ckpt_dir', default='checkpoints', type=str, help='checkpoint directory')
parser.add_argument('--load_ckpt', default=True, type=str2bool, help='load last checkpoint')
args = parser.parse_args()
main(args)