Skip to content
Snippets Groups Projects
Commit fb38b092 authored by 1Konny's avatar 1Konny
Browse files

initial commit

parent e5278957
No related branches found
No related tags found
No related merge requests found
......@@ -76,77 +76,6 @@ class Solver(object):
self.batch_size = args.batch_size
self.data_loader = return_data(args)
# def show_factorization(self):
# decode = self.net.decode
# interpolation = torch.arange(-2, 2.1, 0.5)
# for row in range(10):
# samples = []
# for _ in range(5):
# z = Variable(cuda(torch.randn(1, self.z_dim, 1, 1), self.use_cuda), volatile=True)
# for val in interpolation:
# z[:, row] = val
# sample = F.sigmoid(decode(z))
# samples.append(sample)
# samples = torch.cat(samples, dim=0).data.cpu()
# self.viz.images(samples, opts=dict(title='row:'+str(row)), nrow=len(interpolation))
# get z|x
def show_factorization(self):
decode = self.net.decode
#interpolation = torch.arange(-2, 2.1, 0.5)
interpolation = torch.arange(-6, 6.1, 2)
num_sample = 20
for i in range(num_sample):
img = iter(self.data_loader).next()[1]
img = Variable(cuda(img, self.use_cuda))
z_ori = self.net.encode(img)[:1, :self.z_dim]
z_ori = Variable(cuda(torch.randn(1, self.z_dim, 1, 1), self.use_cuda), volatile=True)
samples = []
for row in range(10):
z = z_ori.clone()
for val in interpolation:
z[:, row] = val
sample = F.sigmoid(decode(z))
samples.append(sample)
samples = torch.cat(samples, dim=0).data.cpu()
self.viz.images(samples, opts=dict(title='sample:'+str(i)), nrow=len(interpolation))
# # fix z random
# def show_factorization(self):
# decode = self.net.decode
# interpolation = torch.arange(-2, 2.1, 0.5)
# num_sample = 20
# for i in range(num_sample):
# z_ori = Variable(cuda(torch.randn(1, self.z_dim, 1, 1), self.use_cuda), volatile=True)
# samples = []
# for row in range(10):
# z = z_ori.clone()
# for val in interpolation:
# z[:, row] = val
# sample = F.sigmoid(decode(z))
# samples.append(sample)
# samples = torch.cat(samples, dim=0).data.cpu()
# self.viz.images(samples, opts=dict(title='sample:'+str(i)), nrow=len(interpolation))
# # fix z(zero vector)
# def show_factorization(self):
# decode = self.net.decode
# interpolation = torch.arange(-2, 2.1, 0.5)
# num_sample = 1
# for i in range(num_sample):
# #z_ori = Variable(cuda(torch.randn(1, self.z_dim, 1, 1), self.use_cuda), volatile=True)
# z_ori = Variable(cuda(torch.zeros(1, self.z_dim, 1, 1), self.use_cuda), volatile=True)
# samples = []
# for row in range(10):
# z = z_ori.clone()
# for val in interpolation:
# z[:, row] = val
# sample = F.sigmoid(decode(z))
# samples.append(sample)
# samples = torch.cat(samples, dim=0).data.cpu()
# self.viz.images(samples, opts=dict(title='sample:'+str(i)), nrow=len(interpolation))
def train(self):
self.net_mode(train=True)
out = False
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment