β-VAE
Pytorch implementation of β-VAE proposed in this paper
Dependencies
python 3.6.4
pytorch 0.3.1.post2
visdom
Datasets
Usage
initialize visdom
python -m visdom.server
you can run codes using sh files
e.g.
sh run_celeba_H.sh
sh run_3dchairs_H.sh
sh run_dsprites_B.sh
or you can run your own experiments by setting parameters manually
e.g.
python main.py --beta 4 --lr 1e-4 --z_dim 32 ...
check training process on the visdom server
localhost:8097
Results
3D Chairs latent space traverse. z was sampled from N(0,I)
sh run_celeba_H.sh
CelebA latent space traverse. z was sampled from N(0,I)
sh run_3dchairs_H.sh
Reference
- β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, Higgins et al., ICLR, 2017
- Understanding disentangling in β-VAE, Burgess et al., arxiv:1804.03599, 2018
- Github Repo: Tensorflow implementation