-
Tianqi Chen authored
* [ARITH] Improve detect linear equation * fix doc
Tianqi Chen authored* [ARITH] Improve detect linear equation * fix doc
detect_linear_equation.cc 6.46 KiB
/*!
* Copyright (c) 2017 by Contributors
* \file bound_deducer.cc
* \brief Utility to deduce bound of expression
*/
#include <tvm/expr.h>
#include <tvm/ir_pass.h>
#include <tvm/ir_visitor.h>
#include <tvm/ir_functor_ext.h>
#include <tvm/arithmetic.h>
#include "./compute_expr.h"
namespace tvm {
namespace arith {
using namespace ir;
// Linear equation, the components can be undefined.
struct LinearEqEntry {
Expr base;
Expr coeff;
};
struct IntervalEntry {
Expr min_value;
Expr max_value;
};
class LinearEqDetector
: public ExprFunctor<LinearEqEntry(const Expr&, const Expr &)> {
public:
explicit LinearEqDetector(Var var)
: var_(var) {}
bool Detect(const Expr& e, LinearEqEntry* ret) {
*ret = VisitExpr(e, e);
if (fail_) return false;
if (!ret->base.defined()) {
ret->base = make_zero(var_.type());
}
if (!ret->coeff.defined()) {
ret->coeff = make_zero(var_.type());
}
return true;
}
LinearEqEntry VisitExpr_(const Add* op, const Expr& e) final {
if (fail_) return LinearEqEntry();
LinearEqEntry a = VisitExpr(op->a, op->a);
LinearEqEntry b = VisitExpr(op->b, op->b);
LinearEqEntry ret;
ret.base = AddCombine(a.base, b.base);
ret.coeff = AddCombine(a.coeff, b.coeff);
return ret;
}
LinearEqEntry VisitExpr_(const Sub* op, const Expr& e) final {
if (fail_) return LinearEqEntry();
LinearEqEntry a = VisitExpr(op->a, op->a);
LinearEqEntry b = VisitExpr(op->b, op->b);
LinearEqEntry ret;
ret.base = SubCombine(a.base, b.base);
ret.coeff = SubCombine(a.coeff, b.coeff);
return ret;
}
LinearEqEntry VisitExpr_(const Mul* op, const Expr& e) final {
if (fail_) return LinearEqEntry();
LinearEqEntry a = VisitExpr(op->a, op->a);
LinearEqEntry b = VisitExpr(op->b, op->b);
if (a.coeff.defined()) {
std::swap(a, b);
}
if (a.coeff.defined()) {
fail_ = true;
return LinearEqEntry();
}
LinearEqEntry ret;
ret.base = MulCombine(a.base, b.base);
ret.coeff = MulCombine(a.base, b.coeff);
return ret;
}
LinearEqEntry VisitExpr_(const Variable* op, const Expr& e) final {
LinearEqEntry ret;
if (op == var_.get()) {
ret.coeff = make_const(op->type, 1);
} else {
ret.base = e;
}
return ret;
}
LinearEqEntry VisitExprDefault_(const Node* op, const Expr& e) final {
if (fail_) return LinearEqEntry();
if (ExprUseVar(e, var_)) {
fail_ = true;
return LinearEqEntry();
} else {
LinearEqEntry ret;
ret.base = e;
return ret;
}
}
private:
Var var_;
bool fail_{false};
// Combine by add
Expr AddCombine(Expr a, Expr b) {
if (!a.defined()) return b;
if (!b.defined()) return a;
return ComputeExpr<Add>(a, b);
}
Expr SubCombine(Expr a, Expr b) {
if (!a.defined()) return -b;
if (!b.defined()) return a;
return ComputeExpr<Sub>(a, b);
}
Expr MulCombine(Expr a, Expr b) {
if (!a.defined()) return a;
if (!b.defined()) return b;
return ComputeExpr<Mul>(a, b);
}
};
Array<Expr> DetectLinearEquation(const Expr& e, const Array<Var>& vars) {
CHECK_GE(vars.size(), 1U);
Expr base = e;
Array<Expr> coeff;
for (Var v : vars) {
LinearEqEntry ret;
if (!LinearEqDetector(v).Detect(base, &ret)) {
return Array<Expr>();
}
coeff.push_back(ret.coeff);
base = std::move(ret.base);
}
std::unordered_set<const Variable*> vset;
for (size_t i = vars.size(); i != 1; --i) {
vset.insert(vars[i - 1].get());
// The previous coeff contains the variable
if (ExprUseVar(coeff[i - 2], vset)) {
return Array<Expr>();
}
}
coeff.push_back(base);
return coeff;
}
// Detect clip condition as min max value
bool DetectClipBound(
const Expr& cond,
std::unordered_map<const Variable*, IntervalEntry>* bmap) {
int flag = 0;
Var var;
auto fvisit = [&bmap, &flag, &var](const NodeRef& n) {
if (const Variable* v = n.as<Variable>()) {
if (bmap->count(v)) {
if (flag == 0) {
var = Var(n.node_);
flag = 1;
} else if (flag == 1) {
if (!var.same_as(n)) {
flag = -1;
}
}
}
}
};
PostOrderVisit(cond, fvisit);
if (flag != 1) return false;
// canonical form: exp >= 0
Expr canonical;
if (const LT* op = cond.as<LT>()) {
if (!op->a.type().is_int()) return false;
canonical = op->b - op->a - make_const(op->a.type(), 1);
} else if (const LE* op = cond.as<LE>()) {
if (!op->a.type().is_int()) return false;
canonical = op->b - op->a;
} else if (const GT* op = cond.as<GT>()) {
if (!op->a.type().is_int()) return false;
canonical = op->a - op->b - make_const(op->a.type(), 1);
} else if (const GE* op = cond.as<GE>()) {
if (!op->a.type().is_int()) return false;
canonical = op->a - op->b;
} else {
return false;
}
LinearEqEntry ret;
if (!LinearEqDetector(var).Detect(canonical, &ret)) return false;
ret.coeff = Simplify(ret.coeff);
IntervalEntry& p = (*bmap)[var.get()];
if (is_one(ret.coeff)) {
// var + shift >=0 -> var >= -shift
if (p.min_value.defined()) {
p.min_value = ir::Max::make(p.min_value, -ret.base);
} else {
p.min_value = -ret.base;
}
return true;
}
if (is_const(ret.coeff, -1)) {
// -var + shift >=0 -> var <= shift
if (p.max_value.defined()) {
p.max_value = ir::Min::make(p.max_value, ret.base);
} else {
p.max_value = ret.base;
}
return true;
}
return false;
}
template<typename OP>
void SplitCommExpr(const Expr& e, std::vector<Expr>* ret) {
if (const OP* op = e.as<OP>()) {
SplitCommExpr<OP>(op->a, ret);
SplitCommExpr<OP>(op->b, ret);
} else {
ret->push_back(e);
}
}
// Detect the lower and upper bound from the expression.
// e must be connected by and.
Array<Expr> DetectClipBound(const Expr& e, const Array<Var>& vars) {
std::vector<Expr> splits;
SplitCommExpr<ir::And>(e, &splits);
std::unordered_map<const Variable*, IntervalEntry> rmap;
for (Var v : vars) {
rmap[v.get()] = IntervalEntry();
}
for (Expr cond : splits) {
if (!DetectClipBound(cond, &rmap)) return Array<Expr>();
}
Array<Expr> ret;
for (Var v : vars) {
IntervalEntry e = rmap[v.get()];
if (e.min_value.defined()) {
e.min_value = Simplify(e.min_value);
}
if (e.max_value.defined()) {
e.max_value = Simplify(e.max_value);
}
ret.push_back(e.min_value);
ret.push_back(e.max_value);
}
return ret;
}
} // namespace arith
} // namespace tvm