Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tvm
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
cld
ml
tvm
Commits
21e13010
Commit
21e13010
authored
6 years ago
by
Wuwei Lin
Committed by
Tianqi Chen
6 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Add int8 gemm recipe (#1614)
parent
7cb85d81
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
topi/recipe/gemm/gemm_int8.py
+185
-0
185 additions, 0 deletions
topi/recipe/gemm/gemm_int8.py
with
185 additions
and
0 deletions
topi/recipe/gemm/gemm_int8.py
0 → 100644
+
185
−
0
View file @
21e13010
"
Example code to perform int8 GEMM
"
import
logging
import
sys
import
numpy
as
np
import
tvm
from
tvm
import
autotvm
DO_TUNING
=
True
PRETUNED_INDEX
=
75333
def
intrin_dot
():
n
=
4
# dp4a requires operands packed by 4
x
=
tvm
.
placeholder
((
n
,),
name
=
'
x
'
,
dtype
=
'
int8
'
)
y
=
tvm
.
placeholder
((
n
,),
name
=
'
y
'
,
dtype
=
'
int8
'
)
k
=
tvm
.
reduce_axis
((
0
,
n
),
name
=
'
k
'
)
z
=
tvm
.
compute
(
(
1
,),
lambda
_
:
tvm
.
sum
(
x
[
k
].
astype
(
'
int32
'
)
*
y
[
k
].
astype
(
'
int32
'
),
axis
=
k
))
def
intrin_func
(
ins
,
outs
):
xx
,
yy
=
ins
zz
=
outs
[
0
]
ib
=
tvm
.
ir_builder
.
create
()
dp4a
=
zz
.
vstore
(
0
,
tvm
.
call_pure_extern
(
'
int32
'
,
'
__dp4a
'
,
xx
.
vload
(
0
,
dtype
=
'
int8x4
'
),
yy
.
vload
(
0
,
dtype
=
'
int8x4
'
),
zz
.
vload
(
0
)))
ib
.
emit
(
dp4a
)
body
=
ib
.
get
()
return
body
,
zz
.
vstore
(
0
,
0
),
body
with
tvm
.
build_config
(
data_alignment
=
4
,
offset_factor
=
1
)
as
cfg
:
binds
=
{
t
:
tvm
.
decl_buffer
(
t
.
shape
,
t
.
dtype
,
t
.
op
.
name
,
data_alignment
=
cfg
.
data_alignment
,
offset_factor
=
cfg
.
offset_factor
,
scope
=
'
local
'
)
for
t
in
[
x
,
y
,
z
]}
return
tvm
.
decl_tensor_intrin
(
z
.
op
,
intrin_func
,
binds
=
binds
)
dot
=
intrin_dot
()
@autotvm.template
def
gemm_int8
(
n
,
m
,
l
):
A
=
tvm
.
placeholder
((
n
,
l
),
name
=
'
A
'
,
dtype
=
'
int8
'
)
B
=
tvm
.
placeholder
((
m
,
l
),
name
=
'
B
'
,
dtype
=
'
int8
'
)
k
=
tvm
.
reduce_axis
((
0
,
l
),
name
=
'
k
'
)
C
=
tvm
.
compute
((
n
,
m
),
lambda
i
,
j
:
tvm
.
sum
(
A
[
i
,
k
].
astype
(
'
int32
'
)
*
B
[
j
,
k
].
astype
(
'
int32
'
),
axis
=
k
),
name
=
'
C
'
)
cfg
=
autotvm
.
get_config
()
s
=
tvm
.
create_schedule
(
C
.
op
)
y
,
x
=
C
.
op
.
axis
AA
=
s
.
cache_read
(
A
,
'
shared
'
,
[
C
])
BB
=
s
.
cache_read
(
B
,
'
shared
'
,
[
C
])
AL
=
s
.
cache_read
(
AA
,
'
local
'
,
[
C
])
BL
=
s
.
cache_read
(
BB
,
'
local
'
,
[
C
])
CC
=
s
.
cache_write
(
C
,
'
local
'
)
k
=
CC
.
op
.
reduce_axis
[
0
]
cfg
.
define_split
(
'
tile_k
'
,
cfg
.
axis
(
k
),
num_outputs
=
3
,
filter
=
lambda
entity
:
entity
.
size
[
2
]
==
4
and
\
entity
.
size
[
0
]
*
2
>=
entity
.
size
[
1
])
ko
,
kt
,
ki
=
cfg
[
'
tile_k
'
].
apply
(
s
,
CC
,
k
)
s
[
CC
].
tensorize
(
ki
,
dot
)
block_x
=
tvm
.
thread_axis
(
'
blockIdx.x
'
)
block_y
=
tvm
.
thread_axis
(
'
blockIdx.y
'
)
thread_x
=
tvm
.
thread_axis
(
'
threadIdx.x
'
)
thread_y
=
tvm
.
thread_axis
(
'
threadIdx.y
'
)
def
block_size_filter
(
entity
):
return
entity
.
size
[
0
]
*
2
>=
entity
.
size
[
1
]
*
2
and
\
entity
.
size
[
1
]
<=
16
and
entity
.
size
[
3
]
<=
4
cfg
.
define_split
(
'
tile_y
'
,
cfg
.
axis
(
y
),
num_outputs
=
4
,
filter
=
block_size_filter
)
cfg
.
define_split
(
'
tile_x
'
,
cfg
.
axis
(
x
),
num_outputs
=
4
,
filter
=
block_size_filter
)
by
,
tyz
,
ty
,
yi
=
cfg
[
'
tile_y
'
].
apply
(
s
,
C
,
y
)
bx
,
txz
,
tx
,
xi
=
cfg
[
'
tile_x
'
].
apply
(
s
,
C
,
x
)
s
[
C
].
bind
(
by
,
block_y
)
s
[
C
].
bind
(
bx
,
block_x
)
s
[
C
].
bind
(
tyz
,
tvm
.
thread_axis
(
'
vthread
'
))
s
[
C
].
bind
(
txz
,
tvm
.
thread_axis
(
'
vthread
'
))
s
[
C
].
bind
(
ty
,
thread_y
)
s
[
C
].
bind
(
tx
,
thread_x
)
s
[
C
].
reorder
(
by
,
bx
,
tyz
,
txz
,
ty
,
tx
,
yi
,
xi
)
s
[
CC
].
compute_at
(
s
[
C
],
tx
)
yo
,
xo
=
CC
.
op
.
axis
s
[
CC
].
reorder
(
ko
,
kt
,
yo
,
xo
,
ki
)
s
[
CC
].
unroll
(
kt
)
for
stage
in
[
AL
,
BL
]:
s
[
stage
].
compute_at
(
s
[
CC
],
kt
)
_
,
xi
=
s
[
stage
].
split
(
stage
.
op
.
axis
[
1
],
factor
=
4
)
s
[
stage
].
vectorize
(
xi
)
s
[
stage
].
double_buffer
()
cfg
.
define_knob
(
'
storage_align
'
,
[
16
,
48
])
for
stage
in
[
AA
,
BB
]:
s
[
stage
].
storage_align
(
s
[
stage
].
op
.
axis
[
0
],
cfg
[
'
storage_align
'
].
val
,
0
)
s
[
stage
].
compute_at
(
s
[
CC
],
ko
)
fused
=
s
[
stage
].
fuse
(
*
s
[
stage
].
op
.
axis
)
ty
,
tx
=
s
[
stage
].
split
(
fused
,
nparts
=
cfg
[
'
tile_y
'
].
size
[
2
])
tx
,
xi
=
s
[
stage
].
split
(
tx
,
nparts
=
cfg
[
'
tile_x
'
].
size
[
2
])
_
,
xi
=
s
[
stage
].
split
(
xi
,
factor
=
16
)
s
[
stage
].
bind
(
ty
,
thread_y
)
s
[
stage
].
bind
(
tx
,
thread_x
)
s
[
stage
].
vectorize
(
xi
)
cfg
.
define_knob
(
'
auto_unroll_max_step
'
,
[
512
,
1500
])
s
[
C
].
pragma
(
by
,
'
auto_unroll_max_step
'
,
cfg
[
'
auto_unroll_max_step
'
].
val
)
s
[
C
].
pragma
(
by
,
'
unroll_explicit
'
,
False
)
cfg
.
add_flop
(
n
*
m
*
l
*
2
)
return
s
,
[
A
,
B
,
C
]
if
__name__
==
'
__main__
'
:
N
=
2048
n
=
m
=
l
=
N
logging
.
basicConfig
(
level
=
logging
.
DEBUG
,
stream
=
sys
.
stdout
)
task
=
autotvm
.
task
.
create
(
gemm_int8
,
args
=
(
n
,
m
,
l
),
target
=
'
cuda
'
)
print
(
task
.
config_space
)
measure_option
=
autotvm
.
measure_option
(
measure_func
=
'
local
'
,
number
=
10
,
n_parallel
=
8
,
timeout
=
20
)
log_name
=
'
gemm_int8.log
'
if
DO_TUNING
:
tuner
=
autotvm
.
tuner
.
XGBTuner
(
task
)
tuner
.
tune
(
n_trial
=
1000
,
measure_option
=
measure_option
,
callbacks
=
[
autotvm
.
callback
.
log_to_file
(
log_name
)])
dispatch_context
=
autotvm
.
apply_history_best
(
log_name
)
best_config
=
dispatch_context
.
query
(
task
.
target
,
task
.
workload
)
print
(
'
\n
Best config:
'
)
print
(
best_config
)
else
:
config
=
task
.
config_space
.
get
(
PRETUNED_INDEX
)
dispatch_context
=
autotvm
.
task
.
ApplyConfig
(
config
)
print
(
"
Using pretuned config:
"
)
print
(
config
)
with
dispatch_context
:
with
tvm
.
target
.
create
(
'
cuda
'
):
s
,
arg_bufs
=
gemm_int8
(
n
,
m
,
l
)
f
=
tvm
.
build
(
s
,
arg_bufs
,
'
cuda
'
,
name
=
'
gemm_int8
'
)
ctx
=
tvm
.
context
(
'
cuda
'
,
0
)
a_np
=
np
.
random
.
randint
(
size
=
(
n
,
l
),
low
=-
128
,
high
=
127
,
dtype
=
'
int8
'
)
b_np
=
np
.
random
.
randint
(
size
=
(
m
,
l
),
low
=-
128
,
high
=
127
,
dtype
=
'
int8
'
)
a
=
tvm
.
nd
.
array
(
a_np
,
ctx
)
b
=
tvm
.
nd
.
array
(
b_np
,
ctx
)
c
=
tvm
.
nd
.
array
(
np
.
zeros
((
n
,
m
),
dtype
=
'
int32
'
),
ctx
)
f
(
a
,
b
,
c
)
np
.
testing
.
assert_allclose
(
c
.
asnumpy
(),
np
.
dot
(
a_np
.
astype
(
'
int32
'
),
b_np
.
T
.
astype
(
'
int32
'
)),
rtol
=
1e-5
)
num_ops
=
2
*
l
*
m
*
n
num_runs
=
1000
timer_f
=
f
.
time_evaluator
(
f
.
entry_name
,
ctx
,
number
=
num_runs
)
t
=
timer_f
(
a
,
b
,
c
).
mean
GOPS
=
num_ops
/
(
t
*
1e3
)
/
1e6
print
(
"
average time cost of %d runs = %g ms, %g GOPS.
"
%
(
num_runs
,
t
*
1e3
,
GOPS
))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment