Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tvm
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
cld
ml
tvm
Commits
292609d8
Commit
292609d8
authored
7 years ago
by
Lianmin Zheng
Committed by
Tianqi Chen
6 years ago
Browse files
Options
Downloads
Patches
Plain Diff
remove dtype in model symbol (#310)
parent
acb9fd62
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
nnvm/python/nnvm/testing/resnet.py
+4
-15
4 additions, 15 deletions
nnvm/python/nnvm/testing/resnet.py
nnvm/python/nnvm/testing/vgg.py
+2
-9
2 additions, 9 deletions
nnvm/python/nnvm/testing/vgg.py
with
6 additions
and
24 deletions
nnvm/python/nnvm/testing/resnet.py
+
4
−
15
View file @
292609d8
...
...
@@ -24,7 +24,6 @@ Implemented the following paper:
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
"
Identity Mappings in Deep Residual Networks
"
'''
# pylint: disable=unused-argument
import
numpy
as
np
from
..
import
symbol
as
sym
from
.
utils
import
create_workload
...
...
@@ -91,7 +90,7 @@ def residual_unit(data, num_filter, stride, dim_match, name, bottle_neck=True):
return
sym
.
elemwise_add
(
conv2
,
shortcut
)
def
resnet
(
units
,
num_stages
,
filter_list
,
num_classes
,
image_shape
,
bottle_neck
=
True
,
dtype
=
'
float32
'
):
bottle_neck
=
True
):
"""
Return ResNet symbol of
Parameters
----------
...
...
@@ -105,17 +104,10 @@ def resnet(units, num_stages, filter_list, num_classes, image_shape,
Ouput size of symbol
dataset : str
Dataset type, only cifar10 and imagenet supports
dtype : str
Precision (float32 or float16)
"""
num_unit
=
len
(
units
)
assert
num_unit
==
num_stages
data
=
sym
.
Variable
(
name
=
'
data
'
)
if
dtype
==
'
float32
'
:
data
=
data
else
:
if
dtype
==
'
float16
'
:
data
=
sym
.
cast
(
data
=
data
,
dtype
=
np
.
float16
)
data
=
sym
.
batch_norm
(
data
=
data
,
epsilon
=
2e-5
,
name
=
'
bn_data
'
)
(
_
,
height
,
_
)
=
image_shape
if
height
<=
32
:
# such as cifar10
...
...
@@ -144,11 +136,9 @@ def resnet(units, num_stages, filter_list, num_classes, image_shape,
pool1
=
sym
.
global_avg_pool2d
(
data
=
relu1
,
name
=
'
pool1
'
)
flat
=
sym
.
flatten
(
data
=
pool1
)
fc1
=
sym
.
dense
(
data
=
flat
,
units
=
num_classes
,
name
=
'
fc1
'
)
if
dtype
==
'
float16
'
:
fc1
=
sym
.
cast
(
data
=
fc1
,
dtype
=
np
.
float32
)
return
sym
.
softmax
(
data
=
fc1
,
name
=
'
softmax
'
)
def
get_symbol
(
num_classes
,
num_layers
=
50
,
image_shape
=
(
3
,
224
,
224
),
dtype
=
'
float32
'
,
**
kwargs
):
def
get_symbol
(
num_classes
,
num_layers
=
50
,
image_shape
=
(
3
,
224
,
224
),
**
kwargs
):
"""
Adapted from https://github.com/tornadomeet/ResNet/blob/master/train_resnet.py
Original author Wei Wu
...
...
@@ -197,8 +187,7 @@ def get_symbol(num_classes, num_layers=50, image_shape=(3, 224, 224), dtype='flo
filter_list
=
filter_list
,
num_classes
=
num_classes
,
image_shape
=
image_shape
,
bottle_neck
=
bottle_neck
,
dtype
=
dtype
)
bottle_neck
=
bottle_neck
)
def
get_workload
(
batch_size
=
1
,
num_classes
=
1000
,
num_layers
=
18
,
image_shape
=
(
3
,
224
,
224
),
dtype
=
"
float32
"
,
**
kwargs
):
...
...
@@ -233,5 +222,5 @@ def get_workload(batch_size=1, num_classes=1000, num_layers=18,
The parameters.
"""
net
=
get_symbol
(
num_classes
=
num_classes
,
num_layers
=
num_layers
,
image_shape
=
image_shape
,
dtype
=
dtype
,
**
kwargs
)
image_shape
=
image_shape
,
**
kwargs
)
return
create_workload
(
net
,
batch_size
,
image_shape
,
dtype
)
This diff is collapsed.
Click to expand it.
nnvm/python/nnvm/testing/vgg.py
+
2
−
9
View file @
292609d8
...
...
@@ -20,7 +20,6 @@
Simonyan, Karen, and Andrew Zisserman.
"
Very deep convolutional networks for
large-scale image recognition.
"
arXiv preprint arXiv:1409.1556 (2014).
"""
import
numpy
as
np
from
..
import
symbol
as
sym
from
.
utils
import
create_workload
...
...
@@ -51,7 +50,7 @@ def get_classifier(input_data, num_classes):
fc8
=
sym
.
dense
(
data
=
drop7
,
units
=
num_classes
,
name
=
"
fc8
"
)
return
fc8
def
get_symbol
(
num_classes
,
num_layers
=
11
,
batch_norm
=
False
,
dtype
=
'
float32
'
):
def
get_symbol
(
num_classes
,
num_layers
=
11
,
batch_norm
=
False
):
"""
Parameters
----------
...
...
@@ -61,8 +60,6 @@ def get_symbol(num_classes, num_layers=11, batch_norm=False, dtype='float32'):
Number of layers for the variant of densenet. Options are 11, 13, 16, 19.
batch_norm : bool, default False
Use batch normalization.
dtype: str, float32 or float16
Data precision.
"""
vgg_spec
=
{
11
:
([
1
,
1
,
2
,
2
,
2
],
[
64
,
128
,
256
,
512
,
512
]),
13
:
([
2
,
2
,
2
,
2
,
2
],
[
64
,
128
,
256
,
512
,
512
]),
...
...
@@ -72,12 +69,8 @@ def get_symbol(num_classes, num_layers=11, batch_norm=False, dtype='float32'):
raise
ValueError
(
"
Invalide num_layers {}. Choices are 11,13,16,19.
"
.
format
(
num_layers
))
layers
,
filters
=
vgg_spec
[
num_layers
]
data
=
sym
.
Variable
(
name
=
"
data
"
)
if
dtype
==
'
float16
'
:
data
=
sym
.
cast
(
data
=
data
,
dtype
=
np
.
float16
)
feature
=
get_feature
(
data
,
layers
,
filters
,
batch_norm
)
classifier
=
get_classifier
(
feature
,
num_classes
)
if
dtype
==
'
float16
'
:
classifier
=
sym
.
cast
(
data
=
classifier
,
dtype
=
np
.
float32
)
symbol
=
sym
.
softmax
(
data
=
classifier
,
name
=
'
softmax
'
)
return
symbol
...
...
@@ -110,5 +103,5 @@ def get_workload(batch_size, num_classes=1000, image_shape=(3, 224, 224),
params : dict of str to NDArray
The parameters.
"""
net
=
get_symbol
(
num_classes
=
num_classes
,
dtype
=
dtype
,
**
kwargs
)
net
=
get_symbol
(
num_classes
=
num_classes
,
**
kwargs
)
return
create_workload
(
net
,
batch_size
,
image_shape
,
dtype
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment