Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tvm
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
cld
ml
tvm
Commits
6292c781
Commit
6292c781
authored
6 years ago
by
Siju
Committed by
Tianqi Chen
6 years ago
Browse files
Options
Downloads
Patches
Plain Diff
[NNVM]Keras SimpleRnn and GRU support (#1729)
parent
7c3ec7df
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
nnvm/python/nnvm/frontend/keras.py
+91
-7
91 additions, 7 deletions
nnvm/python/nnvm/frontend/keras.py
nnvm/tests/python/frontend/keras/test_forward.py
+54
-0
54 additions, 0 deletions
nnvm/tests/python/frontend/keras/test_forward.py
with
145 additions
and
7 deletions
nnvm/python/nnvm/frontend/keras.py
+
91
−
7
View file @
6292c781
...
...
@@ -28,6 +28,10 @@ def _get_elu(insym, alpha):
"""
return
-
alpha
*
_sym
.
relu
(
1
-
_sym
.
exp
(
insym
))
+
_sym
.
relu
(
insym
)
def
_convert_recurrent_activation
(
insym
,
keras_layer
):
act_type
=
keras_layer
.
recurrent_activation
.
__name__
return
_convert_activation
(
insym
,
act_type
,
None
)
def
_convert_activation
(
insym
,
keras_layer
,
_
):
if
isinstance
(
keras_layer
,
str
):
act_type
=
keras_layer
...
...
@@ -420,16 +424,96 @@ def _convert_lstm(insym, keras_layer, symtab):
ixh2
=
_sym
.
dense
(
in_state_h
,
recurrent_wt
,
in_bias
,
use_bias
=
True
,
units
=
units
)
gate
=
ixh1
+
ixh2
gates
=
_sym
.
split
(
gate
,
indices_or_sections
=
4
,
axis
=
1
)
in_gate
=
_
sym
.
sigmoid
(
gates
[
0
]
)
in_transform
=
_
sym
.
sigmoid
(
gates
[
1
]
)
next_c
=
in_transform
*
in_state_c
+
in_gate
*
_
sym
.
tanh
(
gates
[
2
]
)
out_gate
=
_
sym
.
sigmoid
(
gates
[
3
]
)
next_h
=
out_gate
*
_
sym
.
tanh
(
next_c
)
in_gate
=
_
convert_recurrent_activation
(
gates
[
0
],
keras_layer
)
in_transform
=
_
convert_recurrent_activation
(
gates
[
1
],
keras_layer
)
next_c
=
in_transform
*
in_state_c
+
in_gate
*
_
convert_activation
(
gates
[
2
],
keras_layer
,
None
)
out_gate
=
_
convert_recurrent_activation
(
gates
[
3
],
keras_layer
)
next_h
=
out_gate
*
_
convert_activation
(
next_c
,
keras_layer
,
None
)
out_shape
=
tuple
(
dim
if
dim
else
1
for
dim
in
_as_list
(
keras_layer
.
output_shape
)[
0
])
out
=
_sym
.
reshape
(
next_h
,
shape
=
out_shape
)
return
[
out
,
next_h
,
next_c
]
def
_convert_simple_rnn
(
insym
,
keras_layer
,
symtab
):
_check_data_format
(
keras_layer
)
if
not
isinstance
(
insym
,
list
):
buffer
=
np
.
zeros
((
1
,
keras_layer
.
units
),
'
float32
'
)
prev_sym
=
symtab
.
new_const
(
buffer
)
insym
=
[
insym
,
prev_sym
]
in_data
=
insym
[
0
]
prev_sym
=
insym
[
1
]
weightList
=
keras_layer
.
get_weights
()
kernel_wt
=
symtab
.
new_const
(
weightList
[
0
].
transpose
([
1
,
0
]))
recurrent_wt
=
symtab
.
new_const
(
weightList
[
1
].
transpose
([
1
,
0
]))
in_bias
=
symtab
.
new_const
(
weightList
[
2
])
units
=
list
(
weightList
[
0
].
shape
)[
1
]
in_data
=
_sym
.
flatten
(
in_data
)
ixh
=
_sym
.
dense
(
in_data
,
kernel_wt
,
in_bias
,
use_bias
=
True
,
units
=
units
)
prev_sym
=
_sym
.
flatten
(
prev_sym
)
ixh2
=
_sym
.
dense
(
prev_sym
,
recurrent_wt
,
use_bias
=
False
,
units
=
units
)
output
=
ixh
+
ixh2
output
=
_convert_activation
(
output
,
keras_layer
,
None
)
out_shape
=
tuple
(
dim
if
dim
else
1
for
dim
in
_as_list
(
keras_layer
.
output_shape
)[
0
])
output
=
_sym
.
reshape
(
output
,
shape
=
out_shape
)
return
[
output
,
output
]
def
_convert_gru
(
insym
,
keras_layer
,
symtab
):
_check_data_format
(
keras_layer
)
if
not
isinstance
(
insym
,
list
):
buffer
=
np
.
zeros
((
1
,
keras_layer
.
units
),
'
float32
'
)
h_tm1
=
symtab
.
new_const
(
buffer
)
insym
=
[
insym
,
h_tm1
]
in_data
=
insym
[
0
]
h_tm1_sym
=
insym
[
1
]
weightList
=
keras_layer
.
get_weights
()
kernel_wt
=
symtab
.
new_const
(
weightList
[
0
].
transpose
([
1
,
0
]))
recurrent_wt
=
symtab
.
new_const
(
weightList
[
1
].
transpose
([
1
,
0
]))
in_bias
=
symtab
.
new_const
(
weightList
[
2
])
units
=
list
(
weightList
[
0
].
shape
)[
1
]
in_data
=
_sym
.
flatten
(
in_data
)
matrix_x
=
_sym
.
dense
(
in_data
,
kernel_wt
,
in_bias
,
use_bias
=
True
,
units
=
units
)
# inputs projected by all gate matrices at once
split_indices
=
[
keras_layer
.
units
,
2
*
keras_layer
.
units
]
gates
=
_sym
.
split
(
matrix_x
,
indices_or_sections
=
split_indices
,
axis
=
1
)
x_z
=
gates
[
0
]
x_r
=
gates
[
1
]
x_h
=
gates
[
2
]
# hidden state projected separately for update/reset and new
units
=
2
*
keras_layer
.
units
split_indices
=
[
units
]
rec_wts
=
_sym
.
split
(
recurrent_wt
,
indices_or_sections
=
split_indices
,
axis
=
0
)
h_tm1_sym
=
_sym
.
flatten
(
h_tm1_sym
)
matrix_inner
=
_sym
.
dense
(
h_tm1_sym
,
rec_wts
[
0
],
use_bias
=
False
,
units
=
units
)
split_indices
=
[
keras_layer
.
units
]
recurrent
=
_sym
.
split
(
matrix_inner
,
indices_or_sections
=
split_indices
,
axis
=
1
)
recurrent_z
=
recurrent
[
0
]
recurrent_r
=
recurrent
[
1
]
rec_act_z
=
_convert_recurrent_activation
(
x_z
+
recurrent_z
,
keras_layer
)
rec_act_r
=
_convert_recurrent_activation
(
x_r
+
recurrent_r
,
keras_layer
)
units
=
keras_layer
.
units
recurrent_h
=
_sym
.
dense
(
rec_act_r
*
h_tm1_sym
,
rec_wts
[
1
],
use_bias
=
False
,
units
=
units
)
act_hh
=
_convert_activation
(
x_h
+
recurrent_h
,
keras_layer
,
None
)
# previous and candidate state mixed by update gate
output
=
rec_act_z
*
h_tm1_sym
+
(
1
-
rec_act_z
)
*
act_hh
out_shape
=
tuple
(
dim
if
dim
else
1
for
dim
in
_as_list
(
keras_layer
.
output_shape
)[
0
])
output
=
_sym
.
reshape
(
output
,
shape
=
out_shape
)
return
[
output
,
output
]
def
_default_skip
(
insym
,
keras_layer
,
_
):
# pylint: disable=unused-argument
"""
Layers that can be skipped because they are train time only.
"""
return
insym
...
...
@@ -475,9 +559,9 @@ _convert_map = {
# 'UpSampling3D' : _convert_upsample,
# 'Conv1D' : _convert_convolution1d,
# 'GRU'
: _convert_
gru
,
'
SimpleRNN
'
:
_convert_
simple_rnn
,
'
LSTM
'
:
_convert_lstm
,
# 'SimpleRNN'
: _convert_
simple_rnn
,
'
GRU
'
:
_convert_
gru
,
# 'Bidirectional' : _convert_bidirectional,
# 'TimeDistributed' : _default_skip,
...
...
This diff is collapsed.
Click to expand it.
nnvm/tests/python/frontend/keras/test_forward.py
+
54
−
0
View file @
6292c781
...
...
@@ -254,6 +254,58 @@ def test_forward_LSTM():
_test_LSTM
(
4
,
4
,
return_state
=
False
)
_test_LSTM_MultiLayer
(
4
,
4
)
def
_test_RNN
(
inputs
,
units
):
data
=
keras
.
layers
.
Input
(
shape
=
(
1
,
inputs
))
rnn_out
=
keras
.
layers
.
SimpleRNN
(
units
,
return_state
=
True
,
activation
=
'
tanh
'
)
x
=
rnn_out
(
data
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
,
need_transpose
=
False
)
def
_test_RNN_MultiLayer
(
inputs
,
units
):
inputs
=
keras
.
layers
.
Input
(
shape
=
(
1
,
inputs
))
layer
=
keras
.
layers
.
SimpleRNN
(
units
,
return_state
=
True
,
return_sequences
=
True
,
activation
=
'
tanh
'
)
outputs
=
layer
(
inputs
)
output
,
state
=
outputs
[
0
],
outputs
[
1
:]
output
=
keras
.
layers
.
SimpleRNN
(
units
,
activation
=
'
tanh
'
)(
output
,
initial_state
=
state
)
keras_model
=
keras
.
models
.
Model
(
inputs
,
output
)
verify_keras_frontend
(
keras_model
,
need_transpose
=
False
)
def
test_forward_RNN
():
_test_RNN
(
2
,
4
)
_test_RNN
(
4
,
3
)
_test_RNN_MultiLayer
(
4
,
12
)
def
_test_GRU
(
inputs
,
units
):
data
=
keras
.
layers
.
Input
(
shape
=
(
1
,
inputs
))
gru_out
=
keras
.
layers
.
GRU
(
units
,
return_state
=
True
,
recurrent_activation
=
'
sigmoid
'
,
activation
=
'
tanh
'
)
x
=
gru_out
(
data
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
,
need_transpose
=
False
)
def
_test_GRU_MultiLayer
(
inputs
,
units
):
inputs
=
keras
.
layers
.
Input
(
shape
=
(
1
,
inputs
))
layer
=
keras
.
layers
.
GRU
(
units
,
return_state
=
True
,
return_sequences
=
True
,
recurrent_activation
=
'
sigmoid
'
,
activation
=
'
tanh
'
)
outputs
=
layer
(
inputs
)
output
,
state
=
outputs
[
0
],
outputs
[
1
:]
output
=
keras
.
layers
.
GRU
(
units
,
recurrent_activation
=
'
sigmoid
'
,
activation
=
'
tanh
'
)(
output
,
initial_state
=
state
)
keras_model
=
keras
.
models
.
Model
(
inputs
,
output
)
verify_keras_frontend
(
keras_model
,
need_transpose
=
False
)
def
test_forward_GRU
():
_test_GRU
(
2
,
4
)
_test_GRU
(
4
,
3
)
_test_GRU_MultiLayer
(
4
,
4
)
if
__name__
==
'
__main__
'
:
test_forward_elemwise_add
()
test_forward_activations
()
...
...
@@ -272,3 +324,5 @@ if __name__ == '__main__':
test_forward_multi_outputs
()
test_forward_reuse_layers
()
test_forward_LSTM
()
test_forward_RNN
()
test_forward_GRU
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment