Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tvm
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
cld
ml
tvm
Commits
6cd5a8f9
Commit
6cd5a8f9
authored
6 years ago
by
masahi
Committed by
Tianqi Chen
6 years ago
Browse files
Options
Downloads
Patches
Plain Diff
[NNVM] Bug fix Prevent fusing convolution with injective op (#1608)
parent
acc2151c
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
nnvm/src/compiler/graph_fuse.cc
+30
-1
30 additions, 1 deletion
nnvm/src/compiler/graph_fuse.cc
nnvm/tests/python/compiler/test_op_fusion.py
+34
-0
34 additions, 0 deletions
nnvm/tests/python/compiler/test_op_fusion.py
with
64 additions
and
1 deletion
nnvm/src/compiler/graph_fuse.cc
+
30
−
1
View file @
6cd5a8f9
...
...
@@ -63,12 +63,16 @@ nnvm::Graph GraphFindFusibleGroups(nnvm::Graph g) {
// Check if we can fuse to the master.
int
chosen_master
=
-
1
;
bool
ewise
=
inode
.
source
->
num_outputs
()
==
1
;
bool
mark_as_injective
=
false
;
for
(
const
auto
&
e
:
inode
.
inputs
)
{
if
(
fuse_vec
[
e
.
node_id
]
==
FuseRule
::
kUknown
)
{
TOpPattern
ipt
=
pattern_vec
[
e
.
node_id
];
if
(
ipt
!=
kElemWise
)
ewise
=
false
;
if
(
ipt
<=
kInjective
)
{
if
(
ipt
<=
kBroadcast
)
{
fuse_vec
[
e
.
node_id
]
=
FuseRule
::
kFuseToMaster
;
}
else
if
(
ipt
==
kInjective
)
{
fuse_vec
[
e
.
node_id
]
=
FuseRule
::
kFuseToMaster
;
mark_as_injective
=
true
;
}
else
if
(
ipt
==
kOutEWiseFusable
&&
chosen_master
==
-
1
&&
shape_vec
[
idx
.
entry_id
(
nid
,
0
)]
==
shape_vec
[
idx
.
entry_id
(
e
)])
{
...
...
@@ -87,6 +91,8 @@ nnvm::Graph GraphFindFusibleGroups(nnvm::Graph g) {
master_vec
[
nid
]
=
chosen_master
;
if
(
chosen_master
!=
-
1
)
{
pt
=
kOutEWiseFusable
;
}
else
if
(
mark_as_injective
)
{
pt
=
kInjective
;
}
else
{
pt
=
ewise
?
kElemWise
:
kBroadcast
;
}
...
...
@@ -135,8 +141,31 @@ nnvm::Graph GraphFindFusibleGroups(nnvm::Graph g) {
if
(
group_vec
[
nid
]
==
-
1
)
{
group_vec
[
nid
]
=
nid
;
}
// Check if injective op and out_ewise_fusable op (e.g. conv2d) are in the same group.
bool
parent_out_ewise
=
false
;
bool
parent_injective
=
false
;
for
(
const
auto
&
e
:
inode
.
inputs
)
{
TOpPattern
pt
=
pattern_vec
[
e
.
node_id
];
if
(
pt
==
kOutEWiseFusable
)
{
parent_out_ewise
=
true
;
}
else
if
(
pt
==
kInjective
)
{
parent_injective
=
true
;
}
}
// Change the master node from out_ewise_fusable op to itself
if
(
parent_injective
&&
parent_out_ewise
)
master_vec
[
nid
]
=
nid
;
// Propagate the group id.
for
(
const
auto
&
e
:
inode
.
inputs
)
{
TOpPattern
pt
=
pattern_vec
[
e
.
node_id
];
if
(
parent_out_ewise
&&
parent_injective
)
{
if
(
pt
==
kOutEWiseFusable
)
{
continue
;
// Do not fuse out_ewise_fusable op
}
else
if
(
pt
==
kInjective
)
{
master_vec
[
e
.
node_id
]
=
nid
;
}
}
if
(
fuse_vec
[
e
.
node_id
]
==
FuseRule
::
kFuseToMaster
)
{
CHECK
(
group_vec
[
e
.
node_id
]
==
-
1
||
group_vec
[
e
.
node_id
]
==
group_vec
[
nid
]);
...
...
This diff is collapsed.
Click to expand it.
nnvm/tests/python/compiler/test_op_fusion.py
+
34
−
0
View file @
6cd5a8f9
...
...
@@ -77,6 +77,39 @@ def test_injective_reduce_injective():
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
c_np
,
rtol
=
1e-5
)
def
test_injective_conv2d
():
channels
=
16
data
=
sym
.
Variable
(
name
=
"
data
"
)
pool
=
sym
.
global_avg_pool2d
(
data
=
data
)
weight
=
sym
.
reshape
(
pool
,
shape
=
[
1
,
channels
,
1
,
1
])
residual
=
sym
.
conv2d
(
data
=
data
,
kernel_size
=
(
3
,
3
),
channels
=
channels
,
padding
=
(
1
,
1
),
layout
=
"
NCHW
"
,
kernel_layout
=
"
OIHW
"
,
use_bias
=
False
,
name
=
"
conv
"
)
net
=
weight
*
data
+
residual
size
=
56
dtype
=
"
float32
"
dshape
=
(
1
,
channels
,
size
,
size
)
kshape
=
(
channels
,
channels
,
3
,
3
)
oshape
=
dshape
shape_dict
=
{
"
data
"
:
dshape
}
for
target
,
ctx
in
ctx_list
():
graph
,
lib
,
_
=
nnvm
.
compiler
.
build
(
net
,
target
,
shape_dict
)
# data, global_avg_pool, conv weight, conv op, fused elemwise add
assert
graph
.
index
.
num_nodes
==
5
data
=
tvm
.
nd
.
array
(
np
.
random
.
uniform
(
size
=
dshape
).
astype
(
dtype
))
kernel
=
tvm
.
nd
.
array
(
np
.
random
.
uniform
(
size
=
kshape
).
astype
(
dtype
))
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
m
.
run
(
data
=
data
,
conv_weight
=
kernel
)
# get output
out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
(
oshape
,
dtype
))
residual
=
topi
.
testing
.
conv2d_nchw_python
(
data
.
asnumpy
(),
kernel
.
asnumpy
(),
(
1
,
1
),
'
SAME
'
)
weight
=
np
.
mean
(
data
.
asnumpy
(),
axis
=
(
2
,
3
))
c_np
=
weight
[:,
:,
np
.
newaxis
,
np
.
newaxis
]
*
data
.
asnumpy
()
+
residual
np
.
testing
.
assert_allclose
(
out
.
asnumpy
(),
c_np
,
rtol
=
1e-5
)
def
build_and_run
(
sym
,
params
,
data
,
out_shape
,
target
,
ctx
,
opt_level
=
2
):
with
nnvm
.
compiler
.
build_config
(
opt_level
=
opt_level
):
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
sym
,
target
,
shape
=
{
"
data
"
:
data
.
shape
},
params
=
params
)
...
...
@@ -123,3 +156,4 @@ if __name__ == "__main__":
test_ewise_injective
()
test_conv_ewise_injective
()
test_fuse_conv2d_elu
()
test_injective_conv2d
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment